New Advances in Theoretical Understanding of Rare-Earth Emission. Fundaments for Applications by Rational Property Design. Research Report, PCE-1881, Phase 1.

From models to materials. Mutations and extensions in DFT & LF (Density Functional Theory and Ligand Field) modeling strategies.

The working frame: The body of the project, in the subsequently outlined data, continues our structural chemistry quests¹ using previous pioneering methodological advances,^{2,3} applications⁴ and prospects^{5,6} concerning the magnetic and optical properties of lanthanide (Ln) compounds. As pointed in the initial project, the electronic configuration of lanthanides can be characterized as non-*aufbau*, with unpaired f-type electrons (determining spectra and magnetism) placed in lower energy orbitals, below many doubly occupied ones, a very non-routine situation, demanding special multi-configurational Wave Function Theory (WFT, see ref.[1] chapter 2) procedures. However, many interesting materials belong to solid-state regime, where the available methods are tributary to the Density Functional Theory (DFT, see ref.[1] chapter 3).

The frontal use of DFT in rare-earth compounds is not rigorously allowed, Error! Bookmark not defined. because most Ln ions have quasi-degenerate states (i.e. outside of founding DFT premises). Then, must use a combination of numeric experiments, where DFT is yet usable to provide parameters for the so-called Ligand Field (LF) phenomenological models, which are subsequently employed to simulate the spectra. The applications challenge the audacious aim of property-engineering for materials active as phosphors (scintillators), usable in energy-saving domestic lighting or as laser emitters.

A1.1 Non-standard plane-wave (PW) calculations by fractional populations of f-type bands.

Aiming to work in the Plane-Waves (PW) based DFT, specific to solid-state problems, we will proceed systematically, assessing the quality of pseudo-potential data in accounting specific spectral parameters. This quest is a new perspective, since usually the pseudopotentials are tested by reproducing cell geometries or thermodynamic quantities. In this view we selected one⁷ among the few complete repositories of lanthanide pseudopotentials. We then extracted from the large black box of each lanthanide pseudopotential data the components corresponding to all-electron (AE), core projectedaugmented wavefunctions (PAW) and the pseudopotential tail (PS), fitting each by Slater-Type Orbital (STO) primitives. Thus, each radial profile of interest (labelled by *n* and *l* quantum numbers), picked up from the AE part of pseudopotential files, for each lanthanide element, is expanded as linear combination of six STO primitives (with c_i coefficients, *i*=1:6). The STO components are characterized by exponential parameter (ζ) and the radial order *k* (related to a radial r^{k-1} preexponential factor).

The results for the 4f and 5d shells of the whole lanthanide series are comprised in Table 1. Having STO-based definition of orbitals, one may to advance towards analytical formulas of the Slater-Condon parameters of the valence shell. The general two-electron atomic integral can be ascribed, in terms of different (n,l) quantum number couples of the four component orbitals and the *k*-th moment of the multipolar electrostatic function, as the following integral.

$$R^{k}(n_{a}l_{a}, n_{b}l_{b}, n_{c}l_{c}, n_{d}l_{d}) = \int_{r_{1}=0}^{\infty} \int_{r_{2}=0}^{\infty} R_{n_{a}l_{a}}(r_{1})R_{n_{c}l_{c}}(r_{1})R_{n_{b}l_{b}}(r_{2})R_{n_{d}l_{d}}(r_{2})\frac{\min(r_{1}, r_{2})^{\kappa}}{\max(r_{1}, r_{2})^{\kappa+1}}r_{1}^{2}r_{2}^{2}dr_{1}dr_{2}$$
(1)

For the spectral problems expected in the f-f and f-d spectra of lanthanide ions, there are the following integrals: intra-shell $F^k(n_a l_a) = R^k(n_a l_a, n_a l_a, n_a l_a, n_a l_a)$, for $n_a l_a = 4$ f altogether with k=0,2,4,6 indices, while $n_a l_a = 5$ d coupled with the k=0,2,4 series; inter-shell $F^k(n_a l_a, n_b l_b) = R^k(n_a l_a, n_a l_a, n_b l_b)$ particularized for the 4f-5d case, with k=0,2,4; inter-shell $G^k(n_a l_a, n_b l_b) = R^k(n_a l_a, n_a l_a, n_b l_b)$, running on k=1,3 for the 4f-5d pair. The general R^k integrals can be rescaled to $R_k = R^k D_k$, with factors chosen to avoid fractional coefficients in the subsequent use in spectral terms formulas (switching to F_k and G_k , by corresponding factorization of F^k and G^k). Using orbitals expanded in a general series of STOs, computing the particular F^k and G^k integrals implies the estimation of general R^k terms with Slater-type primitives as product integrand. The calculation of such quantities is documented in early literature,⁸ in a style tributary to the dawn of computational quantum chemistry, old computers and codes. In order to be in line with the new computational frame, we prepared our own algorithms, running in *matlabolactave*, with analytical formulas obtained by the help of *Mathematica* algebraic facilities.

Dr. Fănică Cimpoeşu

shell	shell and radial order (k) of the STO components. The c_0 and c_q lines stand for neutral and tri-positive Ln.												
Ln				4f						5d			
k		4	4	4	5	5	6	3	4	5	5	5	5
Ce	ζ	13.69	7.481	3.219	3.723	1.867	1.255	16.114	5.946	5.947	2.804	1.562	0.923
	c_0	0.057	0.349	1.674	-1.013	0.124	0.016	0.096	-0.404	0.185	0.499	0.506	0.167
	C_q	0.064	0.380	1.500	-0.823	0.050	0.002	0.128	-0.504	0.184	0.773	0.321	0.014
Pr	ζ	14.13	7.785	3.372	3.898	1.966	1.330	16.042	7.043	3.015	1.755	1.124	0.772
	$\mathcal{C}0$	0.057	0.350	1.679	-1.019	0.119	0.015	0.098	-0.243	0.446	0.464	0.234	0.048
	C_q	0.072	0.363	1.783	-1.089	-0.020	-0.160	0.132	-0.315	0.590	0.589	-0.470	0.565
Nd	ζ	14.54	8.070	3.508	4.055	2.051	1.392	16.376	7.257	3.090	1.804	1.159	0.788
	c_0	0.057	0.352	1.685	-1.027	0.115	0.015	0.097	-0.238	0.436	0.455	0.247	0.059
	C_q	0.068	0.358	1.779	-1.092	0.003	-0.211	0.130	-0.308	0.577	0.595	-0.424	0.521
Pm	ζ	14.93	8.342	3.634	4.199	2.127	1.446	16.712	7.468	3.162	1.845	1.189	0.797
	$\mathcal{C}0$	0.058	0.354	1.692	-1.036	0.112	0.014	0.096	-0.232	0.427	0.448	0.260	0.068
	C_q	0.067	0.371	1.755	-1.047	-0.055	-0.005	0.134	-0.301	0.564	0.599	-0.382	0.486
Sm	ζ	15.31	8.604	3.751	4.333	2.196	1.493	17.0.4	7.678	3.232	1.162	0.855	1.229
	$\mathcal{C}0$	0.058	0.356	1.699	-1.045	0.110	0.014	0.095	-0.227	0.418	0.443	0.272	0.076
	C_q	0.063	0.370	1.662	-0.978	0.005	-0.205	0.130	-0.293	0.553	0.598	-0.344	0.460
Eu	ζ	15.66	8.856	3.860	4.459	2.259	1.534	17.381	7.888	3.297	1.924	1.223	0.800
	$\mathcal{C}0$	0.059	0.359	1.705	-1.054	0.109	0.014	0.093	-0.221	0.410	0.441	0.282	0.081
	c_q	0.062	0.389	1.606	-0.905	-0.055	-0.012	0.062	0.389	1.606	-0.905	-0.055	-0.012
Gd	ζ	16.01	9.100	3.964	4.578	2.316	1.571	17.713	8.097	3.360	1.956	1.234	0.798
	$\mathcal{C}0$	0.059	0.361	1.711	-1.063	0.107	0.014	0.091	-0.216	0.402	0.439	0.292	0.087
	C_q	0.062	0.379	1.626	-0.950	0.012	-0.194	0.122	-0.285	0.516	0.642	-0.312	0.404
Tb	ζ	16.34	9.335	4.061	4.689	2.369	1.603	18.042	8.306	3.421	1.984	1.241	0.794
	c_0	0.060	0.364	1.717	-1.071	0.106	0.014	0.090	-0.210	0.395	0.438	0.301	0.092
	c_q	0.062	0.382	1.621	-0.951	0.017	-0.211	0.129	-0.269	0.525	0.588	-0.273	0.445
Dy	ζ	16.66	9.561	4.153	4.795	2.417	1.632	18.365	8.517	3.479	2.008	1.246	0.789
	$\mathcal{C}0$	0.061	0.367	1.722	-1.079	0.105	0.014	0.088	-0.205	0.388	0.438	0.309	0.096
	C_q	0.062	0.390	1.581	-0.912	0.010	-0.198	0.133	-0.256	0.525	0.559	-0.249	0.474
Ho	ζ	16.96	9.779	4.239	4.895	2.461	1.657	18.675	8.731	3.532	2.024	1.244	0.780
	c_0	0.063	0.371	1.726	-1.087	0.104	0.014	0.086	-0.199	0.383	0.440	0.315	0.099
	C_q	0.063	0.383	1.611	-0.959	0.035	-0.271	0.119	-0.255	0.514	0.576	-0.244	0.460
Er	ζ	17.25	9.989	4.321	4.989	2.501	1.679	18.982	8.945	3.584	2.041	1.243	0.772
	$\mathcal{C}0$	0.064	0.374	1.730	-1.094	0.103	0.014	0.085	-0.194	0.377	0.441	0.322	0.104
	C_q	0.063	0.389	1.578	-0.931	0.033	-0.275	0.119	-0.248	0.509	0.570	-0.232	0.469
Tm	ζ	17.53	10.191	4.398	5.077	2.537	1.698	19.284	9.161	3.636	2.057	1.242	0.764
	c_0	0.066	0.378	1.733	-1.100	0.102	0.014	0.083	-0.189	0.372	0.442	0.329	0.108
	Cq	0.064	0.390	1.578	-0.940	0.041	-0.298	0.123	-0.239	0.502	0.568	-0.224	0.479
Yb	ζ	17.79	10.384	4.470	5.160	2.570	1.714	19.575	9.380	3.684	2.070	1.239	0.754
	$\mathcal{C}0$	0.067	0.381	1.735	-1.106	0.101	0.014	0.081	-0.183	0.366	0.443	0.335	0.113
	Cq	0.066	0.404	1.587	-0.933	0.031	-0.072	0.118	-0.235	0.499	0.564	-0.214	0.485
Lu	ζ	18.04	10.569	4.538	5.239	2.599	1.727	19.854	9.603	3.731	2.081	1.234	0.745
	$\mathcal{C}0$	0.070	0.385	1.737	-1.112	0.100	0.014	0.080	-0.178	0.362	0.443	0.341	0.118
	Ca	0.068	0.407	1.573	-0.928	0.010	-0.213	0.108	-0.227	0.494	0.555	-0.203	0.500

Table 1. The exponential parameters (ζ_i) and combination coefficients (c_i) for the STO primitives fitting the 4f (left side) and 5d (right side) shells from discussed pseudopotential data.⁷ The header line corresponds to the shell and radial order (k) of the STO components. The c_0 and c_a lines stand for neutral and tri-positive Ln.

Without entering all the details of the performed analysis, we point that we fitted separately the PAW-type inner bodies and PS outer tails, confining each component to three STO primitives, with respective *n*-parameters given in the first and second halves of the Table 1 header, for f and d shells. After obtaining the STO exponentials, based on dense-grid data from pseudo-potential files, one may keep these fixed, adjusting only the coefficients, in the approach of other quantities rendered on poorer radial definitions. Then, the problem becomes a linear algebra procedure, performing the pseudoinverse defined with the help of known primitives, estimated on the available grid points (multiplying then the vector containing the values of the fitted profiles, to get the coefficients). In this way, we fitted the PW results of the Ln(III) triple positive ions, taken with f and d shells in the fractional population schemes, smearing the total number of active electrons equally over the degenerate orbitals. The f radial profiles for ions were indirectly obtained from density differences and isotropic averaging on the 3D maps of α and β type, for the fⁿ and fⁿ⁻¹d¹ configurations.

Dr. Fănică Cimpoeşu

Methodologies for adjusting interelectron parameters in DFT+U techniques. With the above shell STO primitives it is possible to calculate "on the flight" the Slater-Condon parameters, based on averaged radial functions. This gives rise to an interesting opening. Thus, one may estimate quantities like *U* and *J* needed in the DFT+U theories,^{9,10} quite from first principles, without the need to make them adjustable parameters. We rely on the DFT+U formulation implemented in Quantum Espresso, based on the next formula, with *l* either d or f-type, termed in α and β shell populations:

$$E(l) = (1/2) \left(p_{\alpha}^{[l]} + p_{\beta}^{[l]} \right) \left(p_{\alpha}^{[l]} + p_{\beta}^{[l]} - 1 \right) U_{ll} - (1/2) \left(p_{\alpha}^{[l]} \left(p_{\alpha}^{[l]} - 1 \right) + p_{\beta}^{[l]} \left(p_{\beta}^{[l]} - 1 \right) \right) \cdot J_{ll}$$
(2)
The relations with the Slater-Condon parameters, for the d and f shells are
$$U_{dd} = F_{0,\ell}^{dd}, \quad J_{dd} = (7/2) \left(F_{2}^{dd} + 9F_{4}^{dd} \right)$$
(3)

$$U_{ff} = F_0^{ff}, \quad J_{ff} = 10F_2^{ff} + 33F_4^{ff} + 286F_6^{ff}$$
(4)

The standard wisdom is to select U and J empirically, by reproducing correctly general structural features, such as crystallographic data (geometries) or thermodynamic quantities, in certain benchmarks of simple lattices. However, this approach may be prone to uncontrolled parametric balances, yielding good overall results, while the mutual ratios of active factors may be improper. Here we propose a first principle manner to set a DFT+U calculations, using U and J values obtained from the pseudo-potential files. Since is expected that. in compounds, the lanthanides are effectively in ionized status, is reasonable to use the values estimated for ions.

The actual DFT+U schemes allow to apply this correction only on a single shell, d or f. We formulate here the possibility of adding simultaneously two-shell increments, deriving the following form of the inter-shell DFT+U correction, added to the sum of E(d) and E(f) terms from eq. (2):

$$E(df) = (p_{\alpha}^{d} + p_{\beta}^{d})(p_{\alpha}^{f} + p_{\beta}^{f})(U_{df} - (1/2)J_{df}) - (1/2)(p_{\alpha}^{d} - p_{\beta}^{d})(p_{\alpha}^{f} - p_{\beta}^{f}) \cdot J_{df} , \quad (5)$$

where $U_{df} = F_{0}^{df}, \quad J_{df} = 3G_{1}^{df} + 12G_{3}^{df} + 66G_{5}^{df}. \quad (6)$
An extensive tabulation of the parameters of the generalized DFT+U is shown in Table 2.

Table 2. The DFT+U parameters for 4f, 5d and inter-shell df schemes for neutral and ionized lanthanides.

Ln	q=0						q=+3					
	$U_{f\!f}$	U_{dd}	U_{fd}	$J_{\!f\!f}$	J_{dd}	J_{fd}	U_{f}	U_d	U_{fd}	J_{f}	J_d	J_{fd}
Ce	22.023	8.247	10.598	0.836	0.492	0.334	24.427	10.487	13.015	0.920	0.676	0.274
Pr	21.936	8.451	10.897	0.855	0.500	0.368	26.290	9.666	13.032	1.016	0.557	0.277
Nd	22.792	8.538	11.089	0.894	0.501	0.362	26.580	9.924	13.220	1.024	0.573	0.268
Pm	22.882	8.606	11.228	0.906	0.501	0.375	29.167	10.095	13.756	1.142	0.580	0.279
Sm	23.057	8.667	11.405	0.921	0.495	0.395	28.375	7.732	10.998	1.094	0.390	0.156
Eu	22.683	8.711	11.505	0.913	0.491	0.421	30.935	19.254	23.494	1.209	1.074	1.680
Gd	23.877	8.724	11.565	0.958	0.494	0.387	30.262	10.649	14.158	1.167	0.616	0.244
Tb	24.467	8.735	11.604	0.983	0.492	0.394	30.867	10.279	14.008	1.188	0.577	0.242
Dy	24.800	8.707	11.607	1.000	0.486	0.399	31.852	9.974	13.934	1.226	0.547	0.240
Ho	24.959	8.733	11.687	1.008	0.484	0.414	31.332	10.092	13.863	1.194	0.556	0.225
Er	24.819	8.722	11.732	1.006	0.477	0.426	31.950	9.985	13.853	1.216	0.544	0.220
Tm	25.013	8.697	11.743	1.016	0.472	0.432	32.146	9.870	13.775	1.218	0.531	0.214
Yb	24.817	8.667	11.764	1.011	0.465	0.441	35.864	9.784	14.264	1.378	0.523	0.256
Lu	26.078	8.124	11.167	1.058	0.428	0.393	35.429	9.556	13.905	1.357	0.504	0.213

The code implementation of a two-shell DFT+U scheme is difficult, beyond our current reach and formulated objectives. On the other hand, this is a valuable finding and collateral new way to go.

Ligand Field parameters from PW-DFT versus WFT calculations. Band calculations using VASP, Abinit or related codes. The basic assumption of the Ligand Field (LF) theories is that one may account selected problems as described in atomic-like basis (d or f shells), even though, realistically, these can be molecular orbitals (keeping, however, the dominant contribution of d or f metal ion AOs). Since the LF problems show a general multi-configurational nature, it is then a challenge to account them by DFT, intrinsically confined to single-configuration groundstates. The technical answer to this issue is taking as reference a population averaged scheme that has the meaning of an average of configurations (AOC) in a WFT frame, which also meets the concept of energy barycenter, tacitly employed in LF schemes (with respect of which the split of metal ion AOs occurs). In this view, one may use in PW codes the less common input controls of band populations, which in the VASP¹¹ code consist in FERWE

Dr. Fănică Cimpoeşu

and FERDO keywords, in AbInit¹² by OCC directive and in Quantum Espresso¹³ by OCCUPATIONS group, followed by corresponding list of generally fractional values. For the test level of procedures, aiming to extract LF parameters, we selected a simple neutral coordination unit, $[Tb(NO_3)_3(H_2O)_4]$ isomorphous with a reported erbium system.¹⁴

The orbital energies are usually believed to represent the LF schemes. However, this is not true. In turn, we propose a series of orbitally controlled DFT calculations, enforcing non-*aufbau* configurations. For a $f^8 = 7f_{\alpha} + 1f_{\beta}$ system, like the Tb(III) complex, one may emulate the LF split of the ⁷F term by running the β electron among in the distinct orbitals of f-type. The resulting seven energies empirically correspond to the LF split of the ⁷F spectral term of Tb(III) ion, which is also isomorphic with the LF one-electron effective eigenvalues. The energies resulted from the above designed run are, {0.0, 42.1, 130.1, 269.0, 361.1, 558.6, 764.3}, in cm⁻¹. Remarkably, the range corresponds well to the energy spectrum expected in a LF problem. We collected the decomposition of plane wave eigenvalues in localized spherical harmonics. The coefficients are not detailed here, the matrix being schematized as histogram in Figure 1c. This matrix (almost unitary) can be used to obtain the Ligand Field Hamiltonian, applying it to the back-transformation of a diagonal matrix containing the computed configuration energies. Furthermore, the resulted LF matrix can be decomposed in the B_q^k parameters, active in the LF Hamiltonian, which is also compressed in Figure 1.

Figure 1. The LF analysis of the $[Tb(NO_3)_3(H_2O)_4]$ complex unit. (a) the LF color map from PW-DFT treatment; (b) the LF colormap from WFT multiconfigurational calculation. (c) graphical synopsis of the LF master equation and the transformation coefficients (shown as histogram) used to obtain the LF matrix.

Figure 2. Density maps from PW-DFT calculations on Tb(NO₃)₃(H₂O)₄] complex. Upper left corner: the total density. The f_1 - f_7 panels correspond to β density contours (at 0.001e/Å³ isosurfaces) of the f-type orbitals with fractional occupation, in the population-averaged calculation taken as reference for the Ligand Field modeling.

Dr. Fănică Cimpoeşu

The outlined procedure yielded the following B_q^k LF parameters: {-41.576, 201.538, 182.554, -366.682, 87.990 for k = 2 and q = -2 to 2 respective series, {-70.911, 72.417, 379.741, 401.616, 337.363, -222.676, -87.808, 122.655, 120.024 } for *k* =4 and *q*=-4 to 4, and {-78.638, -291.534, -70.613, 84.791, 146.176, 338.771, 594.390, -276.876, 300.443, -245.698, -182.858, 25.542, 296.757} for the for k = 6 and q = -6 to 6, with all values in cm⁻¹. The numerical values of individual parameters are not directly transparent, in meaning. We suggest a picturesque interpretation, with the help of color maps of the Ligand Field potential, as shown in the panel (a) of Figure 1. It is worth noting that the aspect of PW-DFT emulated LF potential map is guite similar to those obtained from multi-configuration WFT calculations, namely the technique appropriate for the LF problem, validating in this way the above outlined DFT-based original procedure.

The WFT potential is represented in the panel (b) of Figure 1. In spite of the resemblance between panels (a) and (b) in Fig.1, the parameters look quite different. Thus, the WFT based B_q^k lists are: $\{32.4, -112.0, 72.0, -140.3, 104.7\}$ for the k = 2 set, $\{-17.0, 56.4, 401.7, 341.8, 100.2, -177.7, -$ -56.9, 112.1, 155.8} for k = 4 and $\{-66.1, -190.2, -39.5, 60.6, 125.1, 211.9, 385.1, -211.2, 210.9, -211.2, 210.9, -211.2, 210.9, -211.2$ -203.9, -138.6, 44.7, 245.7 for the k = 6 (values in cm⁻¹). One notes then that different LF decomposition schemes may be nominally distinct and yet globally similar.

For the sake of completeness, we emulated the orbitals taken as "active" in the PW-DFT treatment (see Figure 2). The snippets are not properly orbitals, but density differences engineered to yield the pattern of the β electron in f-type MOs. Therefore, the sign of function is not obtained. Noticing contours with six or eight lobes, suggesting that the accommodation of the β electron occurs in f-type MOs, one validates the adopted procedure.

A. 1.2 Elaborating new Ligand Field models

Whether for the Ligand Field treatment on the d or f shells there are consecrated codes, like respectively CAMMAG¹⁵ and BONNMAG,¹⁶ the df double-shell treatment is yet an advanced deal of customized handling inside of few groups, including ours, here making steps toward the release of a stable procedure in such an analysis. Certain technicalities are explained in the second part of this section and in the attached Appendix. The generalization of one-electron Ligand Field part to a twoshell frame is not that difficult, conceptually. In the spirit of Angular Overlap Model, ^{3,17} one must take the known master formula, employing projection factors, $D_{i\lambda}^{[l]}$ and, $D_{j\lambda}^{[l']}$, coming from different quantum numbers, l and l', as well as a new set of inter-shell parameters, $e_{[l,l']\lambda}^L$, aside those ascribed inside each shell type $(e_{[l,l]\lambda}^{L} \text{ and } e_{[l',l']\lambda}^{L})$:

 $\langle [l]_{i} | V_{\text{AOM}} | [l']_{j} \rangle = \sum_{L} \sum_{\lambda = \sigma, \pi_{\perp}, \pi_{\parallel}} D_{i\lambda}^{[l]} (\theta_{L}, \phi_{L}, \psi_{L}) D_{j\lambda}^{[l']} (\theta_{L}, \phi_{L}, \psi_{L}) \ e_{[l, l']\lambda}^{L}$ (7) In the technique of Wybourne parameterization¹⁸, i.e. the formula briefed in panel (c) of figure (1), the generalization is also straightforward, accepting a new branch of inter-shell B_a^k parameters running on odd k indices, k=1,3 and 5. However, insofar, because the f and d shells are mixing mutually very little, one may drop the inter-shell explicit parameterization for one-electron LF Hamiltonian. Then, the main technical difficulty in the LF phenomenology of df spectra is the account of inter-shell two-electron part, worked algebraically as suggested in the end section and implemented as detailed in the appendices.

In the following we will illustrate the treatment of a realistic system, modeling Eu(II) ions dopped in Ba₂SO₄ a lattice. First, the crystal is optimized within a PW-DFT calculation, then representative clusters are excerpted and submitted to WFT ab initio treatments, yielding spectral terms, subsequently fitted with a customized LF model. Starting from the Ba₂SiO₄ lattice, the doping of the Eu(II) was simulated taking rectangular cells containing one Eu(II) and seven Ba(II) sites. This would correspond to rather high concentration, 12.5% Eu, but, at the same time, sufficient for neglecting the inter-lanthanide coupling. The band calculations (with geometry optimization including cell dimensions and ion positions) were done by VASP, in unrestricted frame (spin polarized option), taking care that the magnetic moment at lanthanide sites corresponds to the f^7 configuration.

There are two sites, which can be suggestively described as follows: A- with Eu(II) surrounded by five SiO_4^{4-} units, approximately placed as a trigonal bipyramid; **B**- with Eu(II) coordinated by six SiO₄⁴⁻ units, approximately placed as an octahedron. The Eu_A site is surrounded by six Ba ions

Dr. Fănică Cimpoeşu

(belonging to the type B of environment), approximately making a trigonal prism with the mean axis aligned to those of the quasi-trigonal axis of the bipyramid-alike placement of the anions. The cationic environment of the Eu_B site consists in six Ba ions of A-type, with vertices approximately above the edges of the octahedron sketched by anionic bodies. Besides, almost at the same radius, must inscribe two more cations, belonging to the B-type site, roughly capping the octahedron of the A-type cations.

Figure 3. Synopsis of the modelling of Eu(II) dopped in Ba₂SO₄ lattice. A and B panels, the two crystallographic sites. Left side: optimized geometries; Middle part: WFT computed f-type orbitals; Right side: the d-type MOs.

In these structures, the SiO_4^{2-} units act as monodentate ligand (Eu-OSiO₃), approximately along a Si-O bond), as bidentate chelates (EuO₂SiO₂), or tridentate (EuO₃SiO). Certain situations can be regarded as intermediate between bidentate and tridentate. With the obtained local environments, considered as molecular clusters, we go to further modelling, namely the WFT-type approach by CASSCF (Complete Active Space Self Consistent Field) calculations. For site A, we considered the [EuBa₆(SiO₄)₅]⁴⁺ fragment, the positive charge not impinging essentially on the results. For the B type, we took the [EuCs₂Ba₆(SiO₄)₆]⁴⁺ unit, where we considered Cs ions instead of barium sites, in order to keep the total charge of the cluster the same as in the case A.

Figure 4. Synopsis of the superposition LF model. (a) a lone pair (LP) on silicate moiety; (b) the schematized assembly of lone pairs on the SiO_4^{4-} unit, to be parameterized as point-charge; (c) and (d) different views for the system of ligators for the $Eu@[Ba_6(SiO_4)_5]$ cluster representing the the A-type site. Each ball represents a ligator (blue-oxigen site, red-lone pairs) or anti-ligator (gray- Si-centers, green the Ba ions).

We propose assembling the silicate unit from point-charge components bearing explicit distance dependence with respect of the coordination site. The ligators placed at the position of oxygen atoms (first type of ligator), at the barycenters of each of the three lone pairs around an oxygen center (LP=the second type of ligator). The anti-ligators (bearing positive charge) are the silicon atom and barium ions. We use the term "ligator" to distinguish the dichotomized components from the notion of "ligand", as a defined chemical entity. The contributions from different ligators are taken additive:

$$\hat{V}_{LF} = \sum_{L}^{Ligators} \hat{V}_{LF}(L) = \sum_{k=0}^{2l} \sum_{q=-k}^{k} a_k(L) \frac{4\pi}{2k+1} Y_{k,q}(\theta_L, \phi_L) \sum_{L}^{Ligators} Y_{k,q}^*(\theta_L, \phi_L) \quad .$$
(8)

The Figure 4 shows the components of the designed modeling, confined to the site A. The ligators are introduced as simple $a_2/R^3 + a_4/R^5 + a_6/R^7$ dependences in the f shell and $b_2/R^3 + b_4/R^5$ for the d shell. In first instance, one may neglect the fd nondiagonal block. The fitted parameters for the four proposed ligators (O center, LP lone pair, Si and Ba atoms) are given in Table 3.

Table 3. Ligator-based superposition LF model fitting the WFT computed spectral terms on site A

	R_0	a ₂	a4	a_6	b ₂	b 4
0	2.5	4715.8	970.8	185.9	24416.0	28564.0
LP	2.5	-1673.3	-245.5	-53.2	-21469.0	-6706.3
Si	3.25	-4206.2	181.1	-94.5	-84822.0	155.4
Ba	3.6	-5511.6	266.0	-35.4	-150790.0	2566.1

The overall result of the fit is good, emulating the following eigenvalues of the fd Ligand Field matrix: {0, 76.5, 95.6, 231.9, 270.5, 354.5, 377.5, 20200, 20943, 23609, 25301, 28838}, comparable with the WFT computation: {0, 70.8, 75.9, 194.6, 269.7, 365.4, 371.5, 20215, 20607, 23198, 25003, 28864} (all values in cm⁻¹). However, it is somewhat strange that we obtained negative parameters for the LP ligators. Possibly the system is over-parameterized (e.g. the O ligators were sufficient, without appended explicit lone pairs), but we shall check later the issue. Although realistic and complex, the results are not completely satisfactory, remaining to dig into technicalities. An improvement of the fit can be, in principle, attained if consider the *tk* power radial of dependence $a_k(R_0/R)^{tk}$ as matter of optimization, instead of fixed $tk={3,5,7}$ integers for respective k=2,4,6 terms.

Elaborating and testing fortran, matlab-octave or Mathematica programs for handling data and multishell Ligand Field (LF) models. Our work is heavily based on writing our own codes in different environments, ranging from classical fortran varieties (gfortran or f90), up to advanced Mathematica symbolic algebra. For instance, although we skip certain details, a powerful piece of Mathematica program is illustrated below, this accomplishing what is needed to generate the f-d type two-electron integrals in terms of Slater-Condon parameters:

Properly handled, this output is integrated in other codes. In this way, we use high-level programing in writing other pieces of codes. The output of the previous computer algebra coding was practically generating the numerical subroutines illustrated in the fortran90 code discussed in the following.

Very frequently we use the convenient frame of Matlab or Octave, benefiting from built-in procedures (e.g. eigenvalues, minimization, graphical facilities). In Appendix 1 we illustrate a part of a matlab-octave subroutine performing the calculations of the $R^k(n_a l_a, n_b l_b, n_a l_a, n_b l_b)$ quantities, discussed around equation (1), needed to compute the Slater-Condon parameters from STO components (e.g those from Table 1) and subsequently estimate the quantities from Table 2.

In Appendix 2 we illustrate the core of a Fortran 90 program performing the calculation of Ligand Field (LF) spectral terms, that covers all the d, f and fd possible configurations. This implements the new developments of phenomenological two-shell LF modelling. The LF one-electron matrix (for one shell, d or f, or extended two-shell format) is introduced not as a numeric block, but by announcing the number of free parameters and, after reading them, providing the matrices of coefficients for each LF parameter. If want to simply introduce LF entirely numeric, then put 1.0 as sole parameter and provide the brute matrix (the lower diagonal part).

In this form, the input file is set.inp. The first line reads one of the LFtype=dd, LFtype=ff or LFtype=fd directives. If none of these options is retrieved, the program stops. Then, the number of electrons is taken, followed by the minimal and maximal spin projections, ne, msmin, msmax, this option deciding the set of Slater determinants basis. For instance, 2 1.0 1.0 selects only the high spin $(S_z=1)$ configurations with two electrons. If want all, must put 2 -1.0 1.0 (i.e. $S_z=-1,0,1$).

In the present implementation, the code generates practically the full CAS-type (Complete Active Space) stack of configurations (merging the sets with defined range of S_z projections). This means that, for the fd case, one may get very many configurations. In practical problems, starting from a f^n groundstate, only f^(n-1)d1 situations are to be accounted. Limitations in configuration interaction

Dr. Fănică Cimpoeşu

basis can be introduced in further editions. In the present extended form of (fd)ⁿ CAS-type, must add the F0dd, F2dd and F4dd two-electron parameters of the upper orbitals, while these will be not needed in the f⁽ⁿ⁻¹⁾d1 situation (since no inter-electron effects inside the 5d shell are met). The complete list of the two-electron parameters for the fd case is now: F0ff, F2ff, F4ff, F6ff, F0fd, F2fd, F4fd, F6fd, G1fd, G3fd G5fd, F0dd, F2dd, F4dd. Note that the F0ff, F0fd, F0dd parametric sequence and the (hd-hf) one electron gap between shells are not independent. The user should be aware about this issue.

This code is a general configuration interaction (CI) program, generating with Slater rules, the matrix elements of the total Hamiltonian. The particularization to the d, f or fd problems is handled with three "Case" options reading one of the ddbiel, ffbiel or fdbiel routines, with corresponding coefficients of the bi-electronic parameters. Because the lists of fixed coefficients introducing the integrals in the CI are quite lengthy, their printing is omitted in the given Appendix 2. If, instead of using predefined d, f and fd cases, reading the two-electron parameters and their structure-coefficients from input line, one may use this program for more general configuration interactions problems.

Conclusions (*Executive Summary*)

The project delineates this year phase by the title "**From models to materials. Mutations and extensions in DFT & LF (Density Functional Theory and Ligand Field) modelling strategies.**" incorporating a complex spectrum of topics and actions. Must point that it plays on different specialization areas, whose borders are rarely meet together. Thus, we are mostly specialized in molecular quantum chemical calculations, done with Gaussian or Slater type orbitals (GTOs and STOs), but we audaciously stepped in the domain of Plane Wave (PW) bases, mastered by solid-state physicists. We approached the domain with critical intentions, claiming that Density Functional Theory (DFT), the only class of available methods in PW frame, is not well suited for lanthanide spectroscopy topics. With such strong claims, we had to take a precautionary sweep of the methodological environment, with great cost in time and brain power. We did a thorough assessment of the pseudo-potential (PS) techniques used in PW-DFT, translating these building blocks into STO-based functions and estimating integrals specific to Wave-Function Theory (WFT) and Ligand Field (LF) paradigms. These objectives are subsumed to the following activities: *Non-standard plane-wave (PW) calculations by fractional populations of f-type and s. Ligand Field parameters from PW-DFT versus WFT calculations. Band calculations using VASP, Abinit or related codes (Quantum Espresso)*>

To cover the alleged methodological lack, we worked continuously outside routine. Thus, aside using various codes of molecular and solid-state calculations, we did a large amount of programming in different environments: Mathematica, Matlab-Octave and Fortran. Given the non-trivial deal of coding, this outcome counts as a firm deliverable, although not destined to immediate dissemination, partly by legitimate reasons of keeping certain technological secrets. In this year, we wrote and tested many original codes in the mentioned programming languages, amounting a total of thousands of lines. These developments are summarized in the annual report in the section *<A. 1.2 Elaborating new Ligand Field models/ Elaborating and testing fortran, matlab-octave or Mathematica programs for handling data and multi-shell Ligand Field (LF) models>.* Given the deep foundations built in order to initialize de project, we did not aim research papers in this year. However, during the past months, we achieved about 80% from the realization of a paper devoted to the assessment of PW-DFT/PS methodologies in DFT approach of lanthanide compounds and approximately 20% from an applied series of calculations on the LF rationalization of optical properties of lanthanide-based nitrates and silicates.

Deliverables and Dissemination

• The large amount and the difficulty of codes developed along the project's methodological goals (written in Mathematica, Matlab-Octave and Fortran) counts as a firm delivered outcome, the achievement validation being proven in the extended research report.

•Dissemination at conferences: 1 keynote (F. Cimpoesu) at ICAMANA2022, November 22-24th, 2022, Louvain-la-Neuve, Belgium; 1 oral presentation (F. Cimpoesu) at IBWAP 2022, Constanța, 2 poster presentations (A. Toader and C. Buta) at IBWAP 2022, Constanța.

• Dissemination by publication, not scheduled in this phase, mentioning, however, several articles in progress (one in 80% degree of finalization, another about 20% and two others in preliminary setting).

Dr. Fănică Cimpoeşu

function rkg=rkgsto1(bas1,bas2)	Rk= 5040/(a1*a2*(a1+a2)^7);
<pre>ncomp1=length(bas1(:,1)); ncomp2=length(bas2(:,1)); lshell1=bas1(1,2); lshel12=bas2(1,2); lmin=abs(lshell1-lshell2); lmax= (lshell1+lshell2); kont=0; for k=lmin:2:lmax</pre>	<pre>case '5 2 0'</pre>
<pre>kont=kont+1; for ka1=1:ncomp1 for ka1=1:ncomp2 for ka2=1:ncomp1 for kb2=1:ncomp2</pre>	<pre>case '5 3 0'</pre>
<pre>nal=bas1(ka1,1);la1=bas1(ka1,2);za1=bas1(ka1,3); nb1=bas2(kb1,1);lb1=bas2(kb1,2);zb1=bas2(kb1,3); na2=bas1(ka2,1);la2=bas1(ka2,2);za2=bas1(ka2,3); nb2=bas2(kb2,1);lb2=bas2(kb2,2);zb2=bas2(kb2,3);</pre>	Rk= (144*(5*a1^4+35*a1^3*a2+21*a1^2*a2^2+7*a1*a2^3+ a2^4))/(a1^4*a2^2*(a1+a2)^7); case '5_3_2'
<pre>f1=sqrt((2*za1)^(2*nal+1)/factorial(2*nal))*sqrt ((2*zb1)^(2*nb1+1)/factorial(2*nb1)); f2=sqrt((2*za2)^(2*na2+1)/factorial(2*na2))*sqrt ((2*zb2)^(2*nb2+1)/factorial(2*nb2));</pre>	(240*(21*a1^2+7*a1*a2+a2^2))/(a1^3*a2*(a1+a2)^7); case '5_4_0' RK=
<pre>if na1+nb1>na2+nb2 in1=na1+nb1; in2=na2+nb2; a1=za1+zb1; a2=za2+zb2; p1n2k=stract(int2str(in1)) + L int2str(in2) + L int</pre>	(144*(5*a1^7+40*a1^6*a2+140*a1^5*a2^2+ 280*a1^4*a2^3+224*a1^3*a2^4+112*a1^2*a2^5+32*a1 *a2^6+4*a2^7))/(a1^5*a2^4*(a1+a2)^8); case '5_4_1'
<pre>nt2str(k)); else in2=na1+nb1; in1=na2+nb2; a2=za1+zb1; a1=za2+zb2;</pre>	(720*(2*a1^5+16*a1^4*a2+56*a1^3*a2^2+ 28*a1^2*a2^3+8*a1*a2^4+a2^5))/(a1^4*a2^3*(a1+a2))^8); case '5 4 2'
<pre>nln2k=strcat(int2str(in1),'_',int2str(in2),'_',i nt2str(k)); end witch s1s2b</pre>	Rk=- (720*(7*a1^3+56*a1^2*a2+16*a1*a2^2+2*a2^3))/(a1 ^3*a2^2*(a1+a2)^8); case '54 3'
switch hin2k case '2 2 0' RK= (2+(-1-2)-2+(-1-2)-2-2)) ((-1-2+-2-2)+(-1-2)-2)	Rk= (5040*(8*a1+a2))/(a1^2*a2*(a1+a2)^8); case '5 5 0' Rk=-
(2* (a1^2+3*a1*a2+a2^2))/(a1^2*a2^2* (a1+a2)^3); case '2 2_1' 	(2880* (a1^8+9*a1^7*a2+36*a1^6*a2^2+84*a1^5*a2^3 + 126*a1^4*a2^4+84*a1^3*a2^5+36*a1^2*a2^6+9*a1*a2
case '3 2 0' RE= (2*(3*a1^3+12*a1^2*a2+8*a1*a2^2+2*a2^3))/(a1^3*a	<pre>^/+a2^8))/(a1^5*a2^5*(a1+a2)^9); case '5 5 1'</pre>
2^2* (a1+a2)^4); case '3 2_1' Rk= (6*(4*a1+a2))/(a1^2*a2*(a1+a2)^4);	(4320*(a1^6+9*a1^5*a2+36*a1^4*a2^2+84*a1^3*a2^3 + 36*a1^2*a2^4+9*a1*a2^5+a2^6))/(a1^4*a2^4*(a1+a2)
case '3 3 0' $RK^{=}$ (12* (-1)(1+5*-1)(3*-2+1)(2*-2)(2+5*-1)(2*-2)(2+5*-1)(2*-2)(2+5*-1)(2*-2)(2+5*-1)(2*-2)(2+5*-1)(2*-2)(2+5*-1)(2*-2)(2+5*-1)(2*-2)(2)^9); case '5_5_2'
$(12)(a1^3*a2^3*(a1+a2)^5);$ (ase '3 3 1') RE^{-}	(10080*(a1^4+9*a1^3*a2+36*a1^2*a2^2+9*a1*a2^3+a 2^4))/(a1^3*a2^3*(a1+a2)^9); case '5_5_3'
$\begin{array}{c} (24^{\circ}(a1^{-}2^{+}5)a1^{-}a2^{+}a2^{+}a2^{-}2^{-})) / (a1^{-}2^{-}a2^{-}2^{-}(a1^{+}a2^{-})^{+}5);\\ case & 3 3 2^{\circ}\\ Rk = & 120 / (a1^{+}a2^{+}(a1^{+}a2)^{-}5);\\ case & 4 2_0 \end{array}$	(40320*(a1^2+9*a1*a2+a2^2))/(a1^2*a2^2*(a1+a2)^ 9); case '5_5_4'
Rk= (12*(2*a1^4+10*a1^3*a2+10*a1^2*a2^2+5*a1*a2^3+a2 ^4))/(a1^4*a2^2*(a1+a2)^5); case '4 2 1'	Rk= 362880/(a1*a2*(a1+a2)^9); case '6 2 0' Rk=- (240*(3*a1^6+21*a1^5*a2+35*a1^4*a2^2+
Rk= ⁻ (12*(10*a1^2+5*a1*a2+a2^2))/(a1^3*a2*(a1+a2)^5); case '4 3 0' pk= ⁻	35*a1 ³ *a2 ³ +21*a1 ² *a2 ⁴ +7*a1*a2 ⁵ +a2 ⁶))/(a1 ⁶ *a2 ² *(a1+a2) ⁷); case '62 1' pV=
(12*(4*a1^5+24*a1^4*a2+60*a1^3*a2^2+ 45*a1^2*a2^3+18*a1*a2^4+3*a2^5))/(a1^4*a2^3*(a1+ a2)^6); case '4 3 1'	(144*(35*a1^4+35*a1^3*a2+21*a1^2*a2^2+7*a1*a2^3 +a2^4))/(a1^5*a2*(a1+a2)^7); case '6_3_0' Rk=-
Rk= (24*(5*a1^3+30*a1^2*a2+12*a1*a2^2+2*a2^3))/(a1^3 *a2^2*(a1+a2)^6); case '4 3 2'	<pre>(720*(2*a1^7+16*a1^6*a2+56*a1^5*a2^2+ 70*a1^4*a2^3+56*a1^3*a2^4+28*a1^2*a2^5+8*a1*a2^ 6+a2^7))/(a1^6*a2^3*(a1+a2)^8); case '6 3 1'</pre>
Rk= (120*(6*a1+a2))/(a1^2*a2*(a1+a2)^6); case '4 4_0' Rk= (144*(a1^6+7*a1^5*a2+21*a1^4*a2^2+35*a1^3*a2^3+.	Rk= (144*(35*a1^5+280*a1^4*a2+224*a1^3*a2^2+ 112*a1^2*a2^3+32*a1*a2^4+4*a2^5))/(a1^5*a2^2*(a 1+a2)^8); area = 16.2 c1
 21*a1^2*a2^4+7*a1*a2^5+a2^6))/(a1^4*a2^4*(a1+a2) ^7); case '4 4_1' Rk=	<pre>case 0.5_2 Rk= (720*(56*a1^3+28*a1^2*a2+8*a1*a2^2+a2^3))/(a1^4 *a2*(a1+a2)^8); case '6 4 0'</pre>
(240*(a1^4+7*a1^3*a2+21*a1^2*a2^2+7*a1*a2^3+ a2^4))/(a1^3*a2^3*(a1+a2)^7); case '4 4 2' RK=-	RK= (1440*(3*a1^8+27*a1^7*a2+108*a1^6*a2^2+ 252*a1^5*a2^3+252*a1^4*a2^4+168*a1^3*a2^5+72*a1 ^2*a2^6+
(720*(a1^2+7*a1*a2+a2^2))/(a1^2*a2^2*(a1+a2)^7); case '4 4 3' case '6 ⁻ 4 ⁻ 1'	18*a1*a2^7+2*a2^8))/(a1^6*a2^4*(a1+a2)^9); case '6 6 0'

Appendix 1. Part of matlab-octave subroutine computing ingredients for evaluating Slater-Condon generalized parameters. The printing is truncated to the k=6 maximal order

Research Report PCE -1881.

Rk=	Rk=
(1440*(7*a1^6+63*a1^5*a2+252*a1^4*a2^2+	(86400*(a1^10+11*a1^9*a2+55*a1^8*a2^2+
168*a1^3*a2^3+72*a1^2*a2^4+18*a1*a2^5+2*a2^6))/(165*a1^7*a2^3+330*a1^6*a2^4+462*a1^5*a2^5+330*a
a1^5*a2^3*(a1+a2)^9);	1^4*a2^6+
	$165 \times 1^{3} \times 2^{7} + 55 \times 1^{2} \times 2^{8} + 11 \times 1^{2} \times 2^{9} + 2^{10} $
RF=	$a1^{6}*a2^{6}*(a1+a2)^{11}$
(1 / / 0 * - 1 ^ / + 252* - 1 ^ 2* - 2+1 0 8* - 1 ^ 2* - 2^2+	$a_1 \circ a_2 \circ (a_1, a_2) = 1),$
(1440) (20) $a_1 47232$ $a_1 3^{-}a_27100$ $a_1 2^{-}a_2 27$	
2/^di^dz^3+3^dz~4))/(di~4^dz~2^(di+dz)~9);	KK= (1000C0+(-100+11+-107+-0+EE+-10C+-000+
case . 6_4_3.	(120960^(a1~8+11^a1~/^a2+55^a1~6^a2~2+
Rk=	165*a1^5*a2^3+330*a1^4*a2^4+165*a1^3*a2^5+55*a1
(10080*(36*a1^2+9*a1*a2+a2^2))/(a1^3*a2*(a1+a2)^	^2*a2^6+
9);	11*a1*a2^7+a2^8))/(a1^5*a2^5*(a1+a2)^11);
case '6 5 0'	case '6 6 2'
$R\bar{k}=$	RK=
(2880*(6*a1^9+60*a1^8*a2+270*a1^7*a2^2+	(241920*(a1^6+11*a1^5*a2+55*a1^4*a2^2+
720*a1^6*a2^3+1260*a1^5*a2^4+1050*a1^4*a2^5+600*	$165 \times a1^{3} \times a2^{3} + 55 \times a1^{2} \times a2^{4} + 11 \times a1 \times a2^{5} + a2^{6}$))/(a
a1^3*a2^6+	$1^{4} = 2^{4} = (a_1 + a_2)^{1}$
$225 \times a1^{2} \times a2^{2} \times a2^{2} \times a1^{2} \times a1^{$	case '6 6 3'
+=2)^10) •	
(22) (10)	(725760*/s1^/+11*s1^3*s2+55*s1^2*s2^2+
	$(725700^{\circ}(a1 4 \pm 11^{\circ}a1 5^{\circ}a2 \pm 55^{\circ}a1 2^{\circ}a2 2 \pm)$
	11^a1^a2^3+a2^4))/(a1^3^a2^3^(a1+a2)^11);
$(4320^{\circ})^{-1}$	case '6_6_4'
840*a1^4*a2^3+480*a1^3*a2^4+180*a1^2*a2^5+40*a1*	RK = (2000000 + (100) + 11 + 1 + 0 + 000) + (100) + 000 + (11) + 11 + 0 + 000) + (100) + 000 + (11) + 000 + 000) + (100) + 000 + (100) + (100) + 000 + (100) + (100) + 000 + (100) +
a2^6+	(3628800*(a1^2+11*a1*a2+a2^2))/(a1^2*a2^2*(a1+a
4*a2^/))/(a1^5*a2^4*(a1+a2)^10);	2)^11);
case '6 5 2'	case '6 6 5'
RK=	Rk=-39916800/(a1*a2*(a1+a2)^11);
(10080*(8*a1^5+80*a1^4*a2+360*a1^3*a2^2+	otherwise
135*a1^2*a2^3+30*a1*a2^4+3*a2^5))/(a1^4*a2^3*(a1	Rk=0;
+a2)^10);	end
case '6 5 3'	
BF=	rkg(kal,kbl,ka2,kb2,kont) = f1*f2*Rk;
$(40320*(9*=1^3+90*=1^2*=2+20*=1*=2^2+2*=2^3)) / (=$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(3020) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	end
$1 3 a^2 2 (a^{1}a^2) 10),$	end
KK- (202000+(10+=1+=2)) /(=140+=2+(=1+=2) A10)	end
(302000^(10^a1+a2))/(a1^2^a2^(a1+a2)^10);	ena
	ena % k

Appendix 2. Fortran 90 code performing general Ligand Field (LF) Configuration Interaction (CI) calculation of spectral terms for single shell (f or d) and double shell fd cases. The Input consist in LF one-electron matrices and lists of corresponding Slater-Condon parameters.

PROGRAM CI_LF	Fact(0) = 1
! Read from set.inp ! First line must contain one of the ! following statements	Fact(m)=m*Fact(m-1) End do
! LFtype=dd, LFtype=ff or LFtype=fd ! Second line gives the number of electrons ! and the domain of spin projections	<pre>Open(1,file='set.inp') read(1,'(a80)') line read(1,*) ne, msmin, msmax</pre>
! ne, msmin, msmax ! Third line gives the number of Ligand Field !(LF) (aka one electron parameters) ! nLFpar	<pre>write(^, ^) ne, msmin, msmax call tocap(line) lfstat=0 LFtype=' '</pre>
! Fourth line gives the row of LF parameters ! Fifth line gives the row of two electron ! (Slater-Condon) parameters ! (according to the sets from the first line)	<pre>if (lfstat == 0) then call searchk(line,'LFTYPE=DD',lfstat) if (lfstat==1) then</pre>
! The next lines are looping for nLFpar times ! to read the coefficients of ! each LF parameter,	LFtype='dd' endif endif
format of the LF matrix Implicit none	<pre>if (lfstat == 0) then call searchk(line,'LFTYPE=FF',lfstat) if (lfstat==1) then</pre>
<pre>Integer :: i,j,k,l,m Integer :: k1,l1,k2,l2,kl1,kl2 Integer :: monopos,bipos,spintype Integer :: monopos,bipos,spintype</pre>	LFtype='ff' endif endif
Real :: msmin,msmax,ms Integer :: ks,lfstat Integer,Dimension(0:30) :: Fact Integer,Allocatable :: comba(:,:),combb(:,:),	<pre>if (lfstat == 0) then call searchk(line,'LFTYPE=FD',lfstat) if (lfstat==1) then LFtype='fd'</pre>
<pre>configs(:,:) Integer,Allocatable :: nms(:),nalpha(:),nbeta(:) Character(2) :: LFtype</pre>	endif endif
Character(80) :: line Integer :: nLFpar, ntwoel, ntwoelint Real rho Real.Allocatable ::	<pre>if (lfstat == 0) then call searchk(line,'LFTYPE=DF',lfstat) if (lfstat==1) then LFtype='fd'</pre>
<pre>LFpar(:),twoelpar(:),Wparam(:),Hrow(:),E(:), H(:,:),C(:,:) Real,Allocatable ::</pre>	endif endif
<pre>VLF(:,:),LFdef(:,:),twoelcf(:,:,:,:,:), twoelints(:,:,:,:)</pre>	<pre>write(*,*) lfstat write(*,*) line ncfga=Fact(dg)/(Fact(nalpha(ks))*Fact (dg-palpha(ks)))</pre>
Case('dd') Write(*,*) "START dd"	(dg-haipha(ks))) ncfgb=Fact(dg)/(Fact(nbeta(ks))*Fact (dg- nbeta(ks)))
	la Fr
Pacaarch Papart PCF -1881	

Research Report PCE -1881.

Dr. Fănică Cimpoeşu

```
dg=5; ntwoel=3;
Write(*,*) "START ff"
Case('ff')
dg=7; ntwoel=4;
Case('fd')
Write(*,*) "START fd"
dg=12; ntwoel=13;
Case(' ')
 Write(*,*) "STOP"
Stop
End Select
Read(1,*) nLFpar
Write(*,*) nLFpar
Allocate (LFpar(nLFpar))
Allocate (LFdef(dg*(dg+1)/2,nLFpar))
Allocate (VLF(dg,dg))
Allocate (twoelpar(ntwoel))
Allocate (twoelcf(dg,dg,dg,dg,ntwoel))
Allocate (twoelints(dg,dg,dg,dg))
Read(1,*) (LFpar(i),i=1,nLFpar)
Write(*,*) (LFpar(i),i=1,nLFpar)
Read(1,*) (twoelpar(i),i=1,ntwoel)
Write(*,*) (twoelpar(i),i=1,ntwoel)
 do m=1,nLFpar
do i=1,dg
read(l,*) (LFdef(i*(i-1)/2+j,m),j=1,i)
write(*,*) (LFdef(i*(i-1)/2+j,m),j=1,i)
end do !i
 end do !m
Close(1)
write(*,*)
VLF=0
 do i=1,dg
do i=1,dg
do j=1,i
do m=1,nLFpar
VLF(i,j)=VLF(i,j)+LFdef(i*(i-1)/2+j,m)*LFpar(m)
end do !m
VLF(j,i)=VLF(i,j)
end do !j
end do !j
 end do !i
 !do i=1,dg
!write(*,*) (VLF(i,j),j=1,dg)
!end do !i
Select Case (LFType)
Case('dd')
Write(*,*) "START dd"
call ddbiel(twoelcf)
Case('ff')
Write(*,*) "START ff"
call fbiel(twoelcf)
call ffbiel(twoelcf)
Case('fd')
Write(*,*) "START fd"

call fdbiel(twoelcf)
Case(' ')
 Write(*,*) "STOP"
Stop
End Select
 twoelints=0
 do m=1,ntwoel
 twoelints=twoelints+twoelcf(:,:,:,:,m)*twoelpar(m)
 end do
Allocate(nalpha(int(msmax-msmin+1)))
Allocate( nbeta(int(msmax-msmin+1)))
ncfgs=0
do ks=1,int(msmax-msmin+1)
ms=msmin+(ks-1)
nalpha(ks)= int((2*ms + ne)/2.)
nbeta(ks)= int((-ms + ne/2.))
ncfga=Fact(dg)/(Fact(nalpha(ks))*Fact
(dg-nalpha(ks)) *Fact
(dg-nalpha(ks)))
ncfgb=Fact(dg)/(Fact( nbeta(ks))*Fact
(dg- nbeta(ks)))
ncfgs=ncfgs+ncfga*ncfgb
end do ! ks
write(*,*) "no.of. configurations ",ncfgs
Allocate (configs (ncfgs, ne), STAT=Status)
configs=0
k=0
do ks=1,int(msmax-msmin+1)
 Subroutine combinari(ns, ne, ncfg, comb)
Integer :: ns, ne, ncfg
Integer :: mm, i, j, VM, cfgindex, status
```

write(*, ks, ms, nalpha(ks), nbeta(ks), ncfga,ncfgb Allocate(comba(ncfga,nalpha(ks)),STAT=Status) Call combinari(dg, nalpha(ks), ncfga, comba) Allocate(combb(ncfgb,nbeta(ks)),STAT=Status)
Call combinari(dg, nbeta(ks),ncfgb, combb) do i=1,ncfga do j=1,ncfgb k=k+1 configs(k,1:nalpha(ks))=comba(i,:) configs(k, nalpha(ks)+1:nalpha(ks)+nbeta(ks))
=dg+combb(j,:) end do !j end do !i Deallocate(comba) Deallocate(combb) end do ! ks Do i=1,ncfgs
write(*,fmt='(50I3)') (configs(i,j),j=1,ne) end do Allocate (Hrow(ncfgs*(ncfgs+1)/2))
call SlaterRules(Hrow,dg, ncfgs, ne, configs,
nLFpar, ntwoel, vlf, twoelints) !do_i=1,ncfgs !write(*,*) (Hrow(i*(i-1)/2+j),j=1,i)
!end do !i Allocate (E(ncfgs)) Allocate (H(ncfgs,ncfgs)) Allocate (C(ncfgs,ncfgs)) do i=1,ncfgs
do j=1,i
H(i,j)=Hrow(i*(i-1)/2+j)
H(j,i)=H(i,j) enddo enddo rho=0.000001 call eign(ncfgs,rho,H,C,E)
write(*,*) "E"
write(*,fmt='(10F15.2)') E
E=E-minval(E)
write(*,*) "E.rel"
write(*,fmt='(10F15.2)') E End Program CISlaterRules Function monopos(k, l)
Integer :: k,l ! input
Integer :: monopos ! ! output If $(k \le 1)$ Then monopos=l*(l-1)/2+k Else monopos=k*(k-1)/2+1 End If End Function monopos Function bipos(k1, l1, k2, l2)
Integer :: k1,l1,k2,l2,kl1,kl2 ! input
Integer :: monopos,bipos ! output kl1=monopos(k1,11) kl2=monopos(k2,12) bipos=monopos(k11,k12) End Function bipos Function phasesign(X)
phasesign=X/2-Int(X/2) End Function Function spintype(dg, i)
Integer :: dg, i, spintype
If (i <= dg) Then
spintype = 1
Else</pre> spintype =-1 End If End Function spintype

Integer :: combs(ncfgs, ne)
Real :: monoel(dg,dg), biel(dg,dg,dg,dg),
Hrow(ncfgs*(ncfgs+1)/2)

Dr. Fănică Cimpoeșu

```
Integer, Dimension(0:ne):: V
Integer, Dimension(ncfg,ne) :: comb
V=0
comb=0
mm = 0
cfgindex = 0
i = 1
j=0
24 V=0
 VM = ns + 1 - i - ne
 mm = 0
GoTo 21
22 V(j)=V(j)+1
21 Continue
Call addcomb(mm, cfgindex, ne, i, ncfg,comb, V)
mm = 0
 Do j = ne, 2, -1
If (V(j) < VM) GoTo 22
 mm = 1
 V(j) = V(j - 1)
End do !j
 mm = 0i = i + 1
   Deallocate(V, STAT=Status)
 V=0
 If (VM == 0) Return
GoTo 24
End Subroutine combinari
Subroutine addcomb(mm, cfgindex, ne, i, ncfg,
comb, V)
Integer :: 1, mm, cfgindex, ne, i, ncfg
Integer, Dimension(0:ne) :: V
Integer, Dimension(ncfg,ne) :: comb
If (mm == 1) return
cfgindex = cfgindex + 1
 Do'l = 1, ne
comb(cfgindex, 1) = i - 1 + 1 + V(1)
 end do
End Subroutine addcomb
Subroutine tocap(line)
integer i, k, ncars
character*(*) line
character(120) line1
ncars=len(line)
do i=1,ncars
    j = ichar(line(i:i))
if (j.ge.97.and.j.le.122) line(i:i) = char(j-
32)
end do
k = 0
do i=1,ncars
if( line(i:i).ne.' ') then
k=k+1
line1(k:k)=line(i:i)
endif
end do
line(1:k)=line1(1:k)
do i=k+1,ncars
line(i:i)=' '
end do
return
End Subroutine tocap
subroutine searchk(line,name,istat)
character*(*) line,name
integer istat,lenl, lenn
character*80 caps
lenline=len(line)
lennam=len(line)
istat=0
do i=1,len(line)-len(name)
if (line(i:i+len(name)).eq.name) then
exit
endif
end do
End Subroutine search
Subroutine SlaterRules(Hrow,dg, ncfgs, ne, combs,
nmono, nbi, monoel, biel)
Integer :: i,j,k,1,m
Integer :: k1,11,k2,12,k11,k12
Integer :: monopos,bipos,spintype
Integer :: pdg nefge nefge status
Integer :: ne,dg,ncfgs, ncfga,ncfgb, status
Integer :: icfg, jcfg, sc, cnt, R, cphase
Integer :: Sindex(4), Rindex(4), ord(4)
Integer :: cfgi(2*dg), cfgj(2*dg)
Rindex(1) = Sindex(1); Rindex(2) = Abs(Sindex(2))
 End If ord(1) = 0
```

```
write(*,
                        "enter slatrul'
!do i=1,dg
!write(*,*) (monoel(i,j),j=1,dg)
!end do !i
!Do i=1,ncfgs
!write(*,fmt='(50I3)') (combs(i,j),j=1,ne)
!end do
Hrow=0
do icfg = 1, ncfgs
    do jcfg = 1, icfg
sc = 0; cnt = 0;
Sindex=0; Rindex=0; ord=0
efei=0;
cfgi=0; cfgj=0;
  do l = 1, ne
cfgi(combs(icfg, l)) = 1
cfgi(combs(jcfg, l)) = 1
  end do ! 1
do l = 1, 2*dg
If (cfgi(l) /= cfgj(l)) Then
R = 1
  If ((cfgi(l) - cfgj(l))<0)
cnt = cnt + 1
If (cnt > 4) Exit
                                                                      R = -1
  Sindex(cnt) = R
  EndIf
  end do ! ]
Select Case(cnt)
Case(0) ! diagonal CI element; First case
of Slater rules
Of Stater futes
! one electron part
do k = 1, 2*dg
If (cfgi(k) /= 0) Then
! "+ <"; orb$(K); "|f|"; orb$(K); ">";
sc = sc + 1
    If (k > dg) Then
    k1 = k - dg;
    Flse
        Else
k1 = k;
KL - ~,
End If
!write(*,*) k1, monoel(k1, k1)
Hrow(icfg*(icfg-1)/2+jcfg) =
Hrow(icfg*(icfg-1)/2+jcfg) + monoel(k1, k1)
 End If
end do ! k
! two-electron part
do k = 1, 2*dg
do m = k + 1 , 2*dg
If (cfgi(k) /= 0 .and. cfgi(m) /= 0) Then
    sc=sc+1
    If (k > dg) Then
    k1 = k - dg;
    Flee
        Else
        k1 = k;
        End If
        If (m > dg) Then m_1^2 = m - dg;
        Else
        m1 = m;
M1 - m;
End If
! Coulomb integral
Hrow(icfg*(icfg-1)/2+jcfg) =
Hrow(icfg*(icfg-1)/2+jcfg) +
biel(k1,m1,k1,m1)
Tf (conjecture(dg, k) == sp)
     If (spintype(dg, k) == spintype(dg, m))
Then
sc = sc + 1
! Exchange integral
Hrow(icfg*(icfg-1)/2+jcfg) =
Hrow(icfg*(icfg-1)/2+jcfg) -
biel(k1,m1,m1,k1)
  End If
End If
end do !m
end do !k
Case(2) ! bra and ket differ by a pair of
orbitals ; Second case of Slater rules
sc = 0
sc = 0

If (Sindex(1) < 0) Then

Rindex(1) = Sindex(2); Rindex(2) =

Abs(Sindex(1))
  Else
 ord(1) = 0
Do
ord(1) = ord(1) + 1
```

```
ord(1) = ord(1) + 1
    If (combs(icfg, ord(1)) == Abs(Rindex(1)))
Exit.
   End Do
  ord(2) = 0
   Do
   ord(2) = ord(2) + 1
       (combs(jcfg, ord(2)) == Abs(Rindex(2)))
    Τf
  Exit
  End Do
If (Mod(Abs(ord(1) - ord(2)),2)==0) Then
  cphase = 1
  Else
  cphase = -1
 End If
If (Rindex(1) > dg) Then
k1 = Rindex(1) - dg
  Else
  k1
       = Rindex(1)
  End If
If (Rindex(2) > dg) Then
ml = Rindex(2) - dg
  Else
  m1 = Rindex(2)
  End If
       (spintype(dg, Rindex(1)) == spintype(dg,
If (spintype(ag, Kindex(1), -- spintype(ag,
Rindex(2))) Then
sc = sc + 1
! one electron part
! sign* "<"; orb$(Rindex(1)); "|f|";
orb$(Rindex(2)); ">";
Hrow(icfg*(icfg-1)/2+jcfg) = Hrow(icfg*(icfg-
1)/2+jcfg) + monoel(k1, m1)*cphase
End Tf
End If
            k^2 = k
End If
m2
           If (spintype(dg, Rindex(1)) == spintype(dg,
K)) Then
            If (spintype(dg, Rindex(2)) == spintype(dg,
K)) Then
K) inen
sc = sc + 1
! -sign* "<"; orb$(Rindex(1)); ","; orb$(K);
"|g|"; orb$(K); ","; orb$(Rindex(2)); ">";
Hrow(icfg*(icfg-1)/2+jcfg) = Hrow(icfg*(ic
1)/2+jcfg) - biel(k1,k2,k2,m1)*cphase
End If
                                                  Hrow (icfg* (icfg-
            End If
           End If
              End If
 End If
End do !k
 Case(4)
(a); bra and ket differ by two orbital pairs ;
Case III in Slater rules
  sc = 0
Do k = 1,
                 4
Do m = k+1, 4
If (Sindex(k) > 0 .and. Sindex(m) > 0) Then
Rindex(1) = Abs(min(Sindex(k), Sindex(m)));
Rindex(2) = Abs(max(Sindex(k), Sindex(m)))
Else
Else
If (Sindex(k) < 0 .and. Sindex(m) < 0) Then
Rindex(3) = Abs(max(Sindex(k), Sindex(m)));
Rindex(4) = Abs(min(Sindex(k), Sindex(m)))
End If</pre>
  End If
End do !m
End do !k
```

```
If (combs(icfg, ord(1)) == Abs(Rindex(1)))
Exit
    End Do
    ord(2) = 0
ord(2) = ord(2) + 1
If (combs(icfg, ord(2)) == Abs(Rindex(2)))
Exit
ord(3) = 0
ord(3) = ord(3) + 1
If (combs(jcfg, ord(3)) == Abs(Rindex(3)))
Exit
   End Do
 ord(4) = 0
Do
   ord(4) = ord(4) + 1
If (combs(jcfg, ord(4)) == Abs(Rindex(4)))
Exit
   End Do
  k = Abs(ord(1) - ord(3)) + Abs(ord(2) -
ord(4))
  If (mod(k, 2) == 0) Then
  cphase =
  Else
  cphase = -1
End If
  If (Rindex(1) > dg) Then
k1 = Rindex(1) - dg
  Else
  k1 = Rindex(1)
End If
  If (Rindex(2) > dg) Then
k2 = Rindex(2) - dg
  Else
  k^2 = Rindex(2)
  End If
  If (Rindex(3) > dg) Then
ml = Rindex(3) - dg
  Else m1 = Rindex(3)
  End If
  If (Rindex(4) > dg) Then
m2 = Rindex(4) - dg
  Else
       = Rindex(4)
  End If
  If (spintype(dg, Rindex(1)) == spintype(dg,
Rindex(3))) Then
If (spintype(dg, Rindex(2)) == spintype(dg,
Rindex(2)) == spintype(dg,
Rindex(2))
Rindex(4))) Then
Rindex(4))) Then
sc = sc + 1
! sign* "<"; orb$(Rindex(1)); ",";
orb$(Rindex(2)); "|g|"; orb$(Rindex(3)); ",";
orb$(Rindex(4)); ">";
Hrow(icfg*(icfg-1)/2+jcfg) =
Hrow(icfg*(icfg-1)/2+jcfg) +
biel(k1, k2, m1, m2)*cophase
biel(k1, k2, m1, m2) * cphase
End If
 End If
If (sp:
If (spintype(dg, Rindex(1)) == spintype(dg,
Rindex(4))) Then
If (spintype(dg, Rindex(2)) == spintype(dg,
Rindex(3))) Then
sc = sc + 1
Rindex(3)) Then
sc = sc + 1
! -sign* "<"; orb$(Rindex(1)); ",";
orb$(Rindex(2)); "|g|"; orb$(Rindex(4)); ",";
orb$(Rindex(3)); ">";
Hrow(icfg*(icfg-1)/2+jcfg) =
Hrow(icfg*(icfg-1)/2+jcfg) =
Ered if
Ered if

 End If
End If
End Select
     end do !jcfg
end do !icfg
End Subroutine SlaterRules
```

W Fr Dr. Fănică Cimpoeşu

References

¹ Putz, M. V.; Cimpoesu, F.; Ferbinteanu, M. *Structural Chemistry, Principles, Methods, and Case Studies.* Springer: Cham, **2018**. (http://doi.org/10.1007/978-3-319-55875-2)

² Toader, A. M.; Buta, M. C.; Maftei, D.; Putz, M. V.; Cimpoesu, F. Int. J. Mol. Sci., 2019;

³ Suta, M.; Cimpoesu, F.; Urland, W. Coord. Chem. Rev. **2021**, 441, 213981;

⁴ (a) Paulovic, J.; Cimpoesu, F.; Ferbinteanu, M.; Hirao, K. J. Am. Chem. Soc. **2004**, *126*, 3321-3331; (b) Ferbinteanu, M.; Kajiwara, T.; Choi, K-Y.; Nojiri, H.; Nakamoto, A.; Kojima, N.; Cimpoesu, F.; Fujimura, Y.; Takaishi, S.; Yamashita, M. J. Am. Chem. Soc., **2006**, 128, 9008-90009; (c) Cimpoesu, F.; Dahan, F.; Ladera, S.; Ferbinteanu, M.; Costes, J.-P. *Inorg. Chem.*, **2012**, 51(21), 11279-11293.

⁵ (a) Ramanantoanina, H.; Cimpoesu, F.; Gottel, C.; Sahnoun, M.; Herden, B.; Suta, M.; Wickleder, C.; Urland, W.; Daul, C. *Inorg. Chem.*, **2015**, 54(17), 8319-8326; (b) Ramanantoanina, H.; Urland, W.; Herden, B.; Cimpoesu, F.; Daul, C. *Phys. Chem. Chem. Phys.*, **2015**, 17(14), 9116-9125; (c) García-Fuente, A.; Cimpoesu F.; Ramanantoanina H.; Herden B.; Daul C.; Suta M.; Wickleder C.; Urland W. *Chem. Phys. Lett.*, **2015**, 622, 120-123; (d) Ramanantoanina, H.; Sahnoun, M.; Barbiero, A.; Ferbinteanu, M.; Cimpoesu, F. *Phys. Chem. Chem. Phys.*, **2015**, 17(28), 18547-18557; (e) Ramanantoanina, H.; Urland, W.; Garcia-Fuente, A.; Cimpoesu, F.; Daul, C. *Phys. Chem. Chem. Phys.*, **2014**, 16, 14625-14634; (f) Ramanantoanina, H.; Urland, W.; Cimpoesu, F.; Daul, C. *Phys. Chem. Chem. Phys.*, **2014**, 16, 12282-12290; (g) Ramanantoanina, H.; Urland, W.; García-Fuente, A.; Cimpoesu, F.; Daul, C. *Chem. Phys. Lett.*, **2013**, 588, 260-266; (h) Ramanantoanina, H.; Urland, W.; Cimpoesu, F.; Daul, C. *Phys. Chem. Chem. Phys.*, **2013**, 15, 13902-13910.

⁶ García-Fuente, A.; Baur, F.; Cimpoesu, F.; Vega, A.; Jüstel, T.; Urland, W. Chem. Eur. J. 2018, 24, 16276-16281.

⁷ Topsakal, M.; Wentzcovitch, R.M. Comp. Mat. Sci. 2014, 95, 263-270

⁸ Cowan, R.D. *The Theory of Atomic Structure and Spectra*. University of California Press: Berkeley, CA, USA, **1981**.

⁹ Liechtenstein, A. I.; Anisimov, V. I.; Zaanen, J. Phys. Rev. B 1995, 52, R5467.

¹⁰ Anisimov, V. I.; Aryasetiawan, F.; Lichtenstein A. I. J. Phys.: Cond. Matter. 1997, 9(4), 767.

¹¹ (a) Kresse, G.; Hafner, J. J. Phys.: Condens. Matt. **1994**, 6, 8245; (b) Kresse, G.; Joubert, D. Phys. Rev. **1999**, 59, 1758.

¹² Amadon, B.; Anglade, P.-M.; Beuken, J.-M.; Bottin, F.; Boulanger, P.; Bruneval, F.; Caliste, D.; Caracas, R.; Cote, M.; Deutsch, T.; Genovese, L.; Ghosez, Ph.; Giantomassi, M.; Goedecker, S.; Hamann, D.R.; Hermet, P.; Jollet, F.; Jomard, G.; Leroux, S.; Mancini, M.; Mazevet, S.; Oliveira, M.J.T.; Onida, G.; Pouillon, Y.; Rangel, T.; Rignanese, G.-M.; Sangalli, D.; Shaltaf, R.; Torrent, M.; Verstraete, M.J.; Zerah, G.; Zwanziger, J.W. *Comp. Phys. Comm.* **2009**, 180(12):2582.

¹³ Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M.B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; Colonna, N. J. Phys.: Cond. Matt. **2017**, 29(46), 465901.

¹⁴ Ferbinteanu, M.; Kajiwara, T.; Cimpoesu, F.; Katagari, K.; Yamashita, M. Polyhedron 2007, 26:2069-2073.

¹⁵ Cruse, D. A.; Davies, J. E.; Gerloch, M.; Harding, J. H.; Mackey D. J.; McMeeking R. F. CAMMAG, Vol. Cambridge, **1983.**

¹⁶ Bronova, A.; Bredow, T.; Glaum, R.; Riley, M.J.; Urland, W. BonnMag: Computer program for ligand-field analysis of fⁿ systems within the angular overlap model. **2018**, 176-186.

¹⁷ Schönherr, T.; Atanasov, M.; Adamsky, H. *Angular Overlap Model* in Lever, A. B. P.; McCleverty, J. A.; Meyer, T. J. (eds.) Comprehensive coordination chemistry II, vol. 2. Elsevier, Oxford, **2003**, 443-455.

¹⁸ (a) Wybourn, B. G. *Spectroscopic Properties of Rare Earths*. Wiley Interscience, New York, **1965**; (b) Newman, D. J.; Ng, B. K. C. *Crystal Field Handbook*. Cambridge University Press: Cambridge, **2000**.

W Fr Dr. Fănică Cimpoeşu