Noi dezvoltări în înțelegerea teoretică a emisiei păminturilor rare. Fundamente pentru aplicații prin proiectarea rațională a proprietăților. Raport de cercetare, PCE-1881

Descriere generală: Proiectul continuă preocupările noastre de chimie structurală folosind progrese metodologice anterioare, de pionierat, în aplicații și prospecte, privind proprietățile magnetice și optice ale compusilor lantanidici (Ln). După cum a fost arătat în proiectul initial, configuratia electronică a lantanidelor poate fi caracterizată ca non-aufbau, cu electroni de tip f neîmperecheați (determinînd spectrele și magnetismul) plasați în orbitale de energie mai joasă, sub multe funcții dublu ocupate, o situație foarte neobisnuită, solicitînd proceduri speciale de de factora functiilor de undă multi-configurationale (Wave Function Theory, WFT). Cu toate acestea, multe materiale interesante, ca proprietăți, apartin regimului de stare solidă, unde metodele disponibile sînt tributare cadrului teoriei funcționalei densității (Density Functional Theory, DFT). Utilizarea frontală a DFT în compusii cu pămînturi rare nu este permisă în mod riguros, deoarece majoritatea ionilor lantanidici au stări guasi-degenerate (adică în afara premiselor fondatoare ale DFT). Atunci, trebuie să proiectăm o combinație de experimente numerice, unde DFT furnizează parametri pentru așa-numitele modele fenomenologice de tipul cîmpului liganzilor (Ligand Field, LF), care sînt ulterior folosite pentru a simula spectrele. Aplicațiile șarjează scopul îndrăzneț al ingineriei proprietătilor pentru materiale active ca fosfori (scintilatori), utilizabile în iluminatul casnic rentabil energetic, ori ca emitători laser. Totuși contribuția noastră priveste doar componenta academică, teoretică, metodologică și algoritmică. Dezvoltările și contribuțiile sînt foarte interdisciplinare, cuprinzînd matematică, programare, fizică și chimie.

În textul următor prezentarea este dezvoltată conform obiectivelor, referindu-ne la lista de lucrări ale proiectului sub forma referințelor [A#]. Întrucît dezvoltările analitice și algoritmice au fost esențiale realizării proiectului, implicînd zeci de pagini de coduri originale de algebră computațională sau calcul numeric, ilustrăm această componentă prin elemente selectate în anexa actualului document.

Obiectiv 1. De la modele la materiale. Mutații și extensii în strategiile hibride de modelare DFT și de cîmp al liganzilor (LF).

Pentru a lucra în cadrul DFT, cu unde plane (Plane Waves, PW), specifice problemelor de stare solidă, vom proceda la evaluarea sistematică a calității pseudo-potențialelor în reproducerea parametrilor spectrali specifici. Această căutare este o nouă perspectivă, deoarece de obicei pseudo-potențialele sînt testate prin reproducerea geometriilor celulelor sau a cantităților termodinamice. Pornind de la acest aspect, am selectat unul dintre puținele depozite complete de pseudo-potențiale lantanidice. Apoi am extras din cutia neagră a pseudo-potențialelor fiecărui lantanid componentele corespunzătoare, de tip *all-electron* (AE), *projected-augmented-wavefunctions* (PAW) interne și coada pseudo-potențialului (PS), deconvolutîndu-le pe fiecare în primitive Slater-Type Orbitals (STO). Astfel, fiecare profil radial de interes (etichetat cu numerele cuantice n și l), preluat din partea AE a fișierelor pseudo-potențialelor, pentru fiecare lantanid, este explicitat ca o combinație liniară de șase primitive STO (prin coeficienții c_i , i=1 la 6). Componentele STO sînt caracterizate prin parametrul exponențial (ζ) și ordinul radial k (relaționat unui factor pre-exponențial radial r^{k-1}).

Rezultatele pentru straturile 4f și 5d ale sînt redate în Tabelul 1, selectînd doar partea centrală a seriei (Eu,Gd, Tb). Datele complete, avînd definiții bazate pe STO, se poate avansa către formulele analitice ale parametrilor Slater-Condon ai stratului de valență. Integrala atomică bielectronică generală poate fi indexată prin quartete de perechi de cuantice (n,l) ale componentelor orbitale și prin moment de ordin k al dezvoltării electrostatice multipolare:

 $R^{k}(n_{a}l_{a}, n_{b}l_{b}, n_{c}l_{c}, n_{d}l_{d}) = \int_{r_{1}=0}^{\infty} \int_{r_{2}=0}^{\infty} R_{n_{a}l_{a}}(r_{1})R_{n_{c}l_{c}}(r_{1})R_{n_{b}l_{b}}(r_{2})R_{n_{d}l_{d}}(r_{2})\frac{\min(r_{1},r_{2})^{k}}{\max(r_{1},r_{2})^{k+1}}r_{1}^{2}r_{2}^{2}dr_{1}dr_{2} \quad (1)$ Pentru problemele spectrale ale ionilor de lantanid, se așteaptă următoarele integrale particulare: $F^{k}(n_{a}l_{a}) = R^{k}(n_{a}l_{a}, n_{a}l_{a}, n_{a}l_{a}, n_{a}l_{a})$ intra-straturi, pentru $n_{a}l_{a} = 4f$ împreună cu indicii k=0,2,4,6 și $n_{a}l_{a} = 5d$ cuplat cu seriile

k=0,2,4; $F^k(n_al_a, n_bl_b)=R^k(n_al_a, n_al_a, n_bl_b, n_bl_b)$ inter-strat, particularizat pentru cazul 4f-5d, prin k=0,2,4; $G^k(n_al_a, n_bl_b)=R^k(n_al_a, n_bl_b, n_al_a, n_bl_b)$ inter-orbital, dedicat perechii 4f-5d, rulînd pe k=1,3. Integralele generale R^k pot fi rescalate la $R_k = R^k D_k$ printr-un un factor ales pentru a evita coeficienți fracționari în utilizarea ulterioară, în formule ale termenilor spectrali, ajungînd la F_k și G_k , prin factorizarea corespunzătoare a F^k și G^k . Utilizarea orbitalilor definiți în expansiune generală de componente STO implică, în cursul expansiunii liniare, estimarea termenilor R_k , cu produs general de primitive de tip Slater ca integrant. Implementarea a fost realizată prin coduri proprii, rulînd în *matlab-octave*, cu formule analitice obținute cu ajutorul facilităților algebrice din mediul *Mathematica*.

Tabelul 1. Extras din lista parametrilor exponențiali (ζ_i) și a coeficienților de combinare (c_i) pentru primitivele STO care fitează strature 4f (partea stîngă) și 5d (partea dreaptă) din datele pseudopotențialelor discutate. ^{Error! Bookmark not} defined. Linia de antet corespunde stratului și ordinelor radiale (k) ale componentelor STO. Liniile c_0 și c_q reprezintă coeficienții pentru Ln neutri și tri-pozitivi.

Ln				4f						5d			
k		4	4	4	5	5	6	3	4	5	5	5	5
Eu	ζ	15.66	8.856	3.860	4.459	2.259	1.534	17.381	7.888	3.297	1.924	1.223	0.800
	c_0	0.059	0.359	1.705	-1.054	0.109	0.014	0.093	-0.221	0.410	0.441	0.282	0.081
	C_q	0.062	0.389	1.606	-0.905	-0.055	-0.012	0.062	0.389	1.606	-0.905	-0.055	-0.012
Gd	ζ	16.01	9.100	3.964	4.578	2.316	1.571	17.713	8.097	3.360	1.956	1.234	0.798
	<i>C</i> 0	0.059	0.361	1.711	-1.063	0.107	0.014	0.091	-0.216	0.402	0.439	0.292	0.087
	C_q	0.062	0.379	1.626	-0.950	0.012	-0.194	0.122	-0.285	0.516	0.642	-0.312	0.404
Tb	ζ	16.34	9.335	4.061	4.689	2.369	1.603	18.042	8.306	3.421	1.984	1.241	0.794
	$\mathcal{C}0$	0.060	0.364	1.717	-1.071	0.106	0.014	0.090	-0.210	0.395	0.438	0.301	0.092
	C_q	0.062	0.382	1.621	-0.951	0.017	-0.211	0.129	-0.269	0.525	0.588	-0.273	0.445

Fără a prezenta toate detaliile analizei efectuate, subliniem că am fitat separat corpurile interioare de tip PAW și cozile PS externe, limitîndu-ne pentru fiecare componentă la trei primitive STO, cu parametrii n respectiv dați în prima și a doua jumătate a antetului tabelului 1, pentru fiecare din straturile f și d. După obținerea exponențialelor STO, pe baza datelor cu grilă densă din fișierele de pseudo-potențiale, acestea se pot menține fixe, ajustînd doar coeficienții, în abordarea altor mărimi care sînt redate într-o definiție radială mai slabă. Atunci, problema devine o procedură de algebră liniară, realizată cu funcția pseudoinversă definită după matricea primitivelor cunoscute, estimate în punctele disponibile ale grilei. În acest fel, am fitat rezultatele PW ale ionilor triplu pozitivi Ln(III), luați cu stratul f în calcule cu scheme de populație fracționară, distribuind numărul total de electroni activi pe orbitalii degenerați. Profilele radiale f și d pentru ioni au fost obținute indirect din diferențele de densitate de tipul α și β , pentru configurațiile fⁿ și fⁿ⁻¹d¹.

Pentru a obține profiluri radiale atribuibile nivelelor f și d ale ionilor lantanidici în compuși, am elaborat tratamente non-rutină luînd celulele optimizate ale trifloururilor lantanidice, LnF₃, ca exemple prototipice. Pentru a obține funcția f, ocuparea este setată să reprezinte polarizarea realistă de spin a stării fundamentale a ionilor liberi. Astfel, dacă populația f este formată din n_{α} electroni spin-sus și n_{β} electroni spin-jos, introducem șapte orbitale cu $n_{\alpha}/7$ și, respectiv, șapte $n_{\beta}/7$ valori fracționale, în ocupările corespunzătoare ale seturilor de funcții nerestricționate. Apoi, se produce fișierul de densitate a polarizării de spin (format cub) cu densitatea totală (n_{α} - n_{β}). Acest cub de densitate este gestionat cu programe fortran proprii, care produc un profil radial mediat în jurul centrului lantanidului vizat. Media populațiilor spinorbitale egale emulează o formă quasi-sferică a centrului lantanidic, densitatea spinului fiind proporțională cu pătratul profilul radial, $r^2R_{4t}^2$. Funcția de undă medie 4f este ușor de obținut ca rădăcină pătrată a densității, deoarece partea radială 4f nu prezintă puncte nodale. Lucrurile sînt ceva mai complicate în extragerea funcției 5d, lăsînd însă la o parte detaliile aferente. Din profilurile radiale obținut se pot extrage parametrii Slater-Condon, după procedura descrisă anterior. Spre deosebire de bazele Gaussiene, despre care am constatat că realizează supraestimări ale parametrilor F_k , [A3] aceste metode produc cantități compatibile cu datele spectrale.

4 Fr Dr. Fănică Cimpoesu

Figura 1. (a) Comparația profilurilor radiale ale orbitalilor de tip 4f și 5d pentru Gd^{3+} liber și pentru ionul din rețeaua cubică idealizată GdF_3 . Panoul din stânga: funcții de tip f; Partea dreaptă: funcții de tip d. (b) Variația F_2^{ff} (partea stângă) și F_2^{fd} (partea dreaptă) (în abscisă, numerele atomice Z ale seriei Ce-Yb). Linie albastră, paametrii în atomul neutru. Linie roșie- parametrii in ioni Ln(III) liberi. Linie verde, ionii lantanidici in retea LnF₃

Rezultatele tratamentului sînt prezentate în figura 1a, unde profilurile ionilor lantanidici din fluoruri LnF₃ (curbele ajustate, prezentate cu linie albastră întreruptă) sînt comparate cu cele ale ionilor liberi de Ln³⁺ (indicate prin linie roșie continuă). Se observă că, în timp ce maximele 4f din cele două cazuri sînt strâns similare, funcția 5d prezintă diferențe sensibile. Acest lucru poate fi explicat prin faptul că electronii f, deși importanți pentru proprietățile optice și magnetice, nu participă la legătura chimică. Spre deosebire de aceasta, virtualele 5d ale ionului liber sînt puternic implicate în legătură, acționând ca acceptori ai densității donate de liganzi, situație ce va fi discutată și într-o secțiune următoare. Punctele colectate din prelucarea cuburilor de densitate de spin sînt afișate cu cercuri. Distribuția iregulară, la distanțe mari, apare din abaterea de la simetria sferică [A5].

În LnF₃ se obține o reducție generală a integralelor, sub valorile ionilor liberi, chiar sub cele ale atomilor neutri. Acest lucru e determinat de așa-numitul efect nefelauxetic, atribuit gonflării profilurilor atomice radiale, sub influența liganzilor. Deoarece învelișul f este doar puțin modificat prin imersarea corpului ionic într-o rețea, reducerea nefelauxetică este mică. Raportul mediu nefelauxetic, $\beta^{ff} = F_k^{ff}(LnF_3)/F_k^{ff}(Ln^{3+})$, luînd toți indicii *k*=0, 2, 4, 6 și toți ionii lantanidici, este aproximativ $\beta^{ff}\approx 0.95$, în conformitate cu asemănarea strânsă a profilurilor 4f din partea stângă a figurii 1b. Dimpotrivă, așa cum arată partea dreaptă a figurii 1, învelişul d suferă o dilatare puternică, cu amplitudine atenuată la fosta rază ionică și deplasată către liganzi. În consecință, raportul nefelauxetic mediu pentru funcțiile 5d este mult subunitar, $\beta^{dd} \approx 0.38$. Combinînd comportamentul diferit al straturilor f și d, raportul nepelauxetic al integralei F_k^{fd} are o valoare intermediară, cu $\beta^{fd} \approx 0.72$. Avînd la dispoziție parametrii Slater-Condon din date specifice tratamentelor DFT utilizate, mai departe, în modele de tip Ligand Field (LF), am realizat o extensie metodologică inovativă, hibridizînd o procedură computațională și un model fenomenologic. Pe această cale, experimente numerice inovativ proiectate în cadrul DFT, permițînd avansarea către modelarea spectrelor complete.

Cu primitivele STO orbitale de mai sus este posibil să se calculeze "în zbor" parametrii Slater-Condon, pe baza funcțiilor radiale medii, realizînd o deschidere interesantă. Astfel, se pot estima parametrii Coulomb și de schimb, U și J, necesari în teoriile DFT+U, din principii prime, fără a le mai considera parametri ajustabili. Totuși, testele noastre arată că această tentativă nu ameliorează corespunzător datele din calcule PW-DFT. Am realizat calcule DFT+U pentru sisteme de forma [(H₂O)ZnL-Ln(NO₃)₃], unde Ln=Gd, Tb, Dy, Ho, și L este is N,N'-2,2-dimethyl-propylenedi(3-methoxy-salicylideneiminato) iar parametrul U este introdus conform formulării lui Dudarev. În genere, se consideră că tratamentul DFT+U îmbunătățește descrierea sistemelor puternic corelate. Parametrul U, este ajustat empiric, îndeobște în jurul valorii de 5 eV. Însă acesta este tocmai integrala Slater-Condon F_0 , care, după analizele anterioare, ar trebui să se plaseze jurul valorii de 30 eV. Am verificat un domeniu mai larg, cu U variind de la 5 la 20 eV, după această limită calculele devenind dificil de controlat. Rezultatele din figura 2, arată cum creșterea progresivă a parametrului U crește separarea între orbitalii α și β , precum și între benzile ocupate și cele virtuale. O asemenea situație este incompatibilă cu fenomenologia de tip Ligand Field, în pofida așteptărilor de ameliorare în urma tratamentelor DFT+U. Acesta este un rezultat negativ, dar a fost raportat ca atare, date fiind evidențele. [A12]

if For Dr. Fănică Cimpoesu

Figura 2. Densitățile de stări (density of states, DOS) totale și parțiale (pDOS) în sisteme{[(H₂O)ZnL-Ln(NO₃)₃]. (a) DOS și pDPOS d&f pentru Ln. (b) și (c) variația pDOS(d), ca funcție de parametrul *U* calcule DFT+U pentru Ln=Gd, Tb, Dy și Ho. Porțiunile hașurate reprezintă benzile ocupate axa pozitivă corespunzînd spinului α și cea negativă spinului β .

Am analizat profilele din figura cu ajutorul teoriei momentelor statistice. Pentru o distribuție, momentul de ordin *n* este de forma: $M_n = \int_{-\infty}^{+\infty} x^n g(x) / \int_{-\infty}^{+\infty} g(x)$. Momentul de ordin I reprezintă baricentrul distribuției g, $x_0=M_1$. Momentele centrale, definite ca $\mu_n = \int_{-\infty}^{+\infty} (x-x_0)^n g(x)/dx$ $\int_{-\infty}^{+\infty} g(x)$ realizează o descriere sintetică a funcției g(x). Am aplicat aceste măsuri densitățiilor de stări f, g = pDOS(f), în domeniul lor de energie x = e. Este convenabilă conversia momentelor în forma, $\sigma_n = (\mu_n)^{1/n}$, caz în care valoarea de ordinul doi reprezintă lărgimea medie a unui profil. Acest eșafodaj ne facilitează compararea schemelor orbitale de tip f din calcule PW-DFT cu schema LF. Cheia comparației constă în versiunea pentru colecții discrete a teoria momentelor, tratînd în acest fel spectrul stărilor LF: $\mu_n^{LF} = \sum_i \varepsilon_i^n$. Un alt detaliu este observația că valoarea σ_2 trebuie să fie de ordinul scindării orbitalelor f în cîmpul liganzilor. Estimînd spectrul LF cu ajutorul calculelor de tip CASSCF (Complete Active Space Self Consistent Field) pentru complexul molecular cu Ln=Tb, se obține următorul spectru de stări pentru termenul ⁷F, e_{LF} ={0.0, 79.7, 148.5, 223.3, 313.6, 480.0, 668.0} (cm⁻¹), valori comparabile cu seria energiilor orbitalelor canonice: $e_{MO} = \{0.0, 87.8, 131.7, 197.5, 307.3, 482.8, 680.4\}$ (cm⁻¹), conturînd ideea că energiile orbitale sunt o măsură a schemei LF. Astfel obținem parametrul $\sigma_2^{LF} = 574.8 \text{ cm}^{-1}$, observând așadar că rădăcina pătrată a momentului central de ordin II a matricei LF poate fi privită ca o măsură a tăriei LF. Convertind în electron volți, $\sigma_2^{LF} = 0.07$ eV, constatăm că măsurile similare din datele pDOS, în domeniul 2-3 eV, relativ puțin influențate de variația U, care supraestimează mult această cantitate. Și acesta este un rezultat negativ, enuntat ca atare, punînd în vederea comunității stiințifice, fie provocarea de a aduce metodele PW-DFT într-o anume compatibilitate, fie de a le folosi în mod critic si limitat. [A12]

Pe de altă parte, DFT este nesistematic și deviații ca cele incriminate în paragraful anterior pot să nu apară, ori să fie mai puțin severe, ca în exemplele ce urmează. Se conturează faptul că sînt problematice sistemele ce contin liganzi mari, cu elemente putin electronegative, liganzii cu natură de bază Lewis tare determinînd scheme orbitale mai apropiate de dezideratele teoriei cîmpului liganzilor (LF). În asemenea situații se pot emula, într-o procedură de bandă configurații diferite, cum am reușit pentru un sistem mai simplu, complexul molecular [Tb(NO₃)₃(H₂O)₄], tratat prin PW-DFT în celulă periodică. Am reușit o serie de calcule DFT ce controlează populațiile orbitalele, impunînd configurații non-aufbau. Pentru un sistem $f^8 = 7f_{\alpha} + 1f_{\beta}$, precum complexul de Tb(III), se poate emula scindarea LF a termenului ⁷F comutînd electronul β între orbitalii de tip f. Cele sapte energii rezultate corespund scindării LF a termenului spectral ⁷F al ionului de Tb(III), schemă izomorfă cu valorile proprii efective LF mono-electronice. Energiile sînt {0.0, 42.1, 130.1, 269.0, 361.1, 558.6, 764.3}, în cm⁻¹. În mod remarcabil, intervalele corespund spectrului ordinului de mărime asteptat într-o problemă LF. Am efectuat descompunerea vectorilor proprii ale undelor plane în armonice sferice localizate. Datele concrete nu sînt detaliate aici, parametrii LF fitați din cadrul PW-DFT fiind sintetizați sub forma hărții de culoare a potențialului în sfera coordinativă din figura 3a. Observăm o comparabilitate calitativă cu harta rezultată din datele de tip WFT (figura 3b). Matricea LF extrasă din proiectiilor orbitalelor f este schematizată ca histogramă în figura 3c.

W Fr Dr. Fănică Cimpoesu

Figura 3. Analiza LF a unității complexului [Tb(NO₃)₃(H₂O)₄]. (a) Harta LF din tratamentul PW-DFT; (b) harta LF din calcule multiconfiguraționale WFT; (c) rezumat grafic al ecuației LF și a matricii coeficienților de transformare utilizată pentru a obține Hamiltonianul LF din energiile configurațiilor din PW-DFT. (d) hărți de densitate din calcule PW-DFT: stînga sus: densitatea totală, miniaturile f_1 - f_7 corespund contururilor de densitate β în configurațiile emulate similar multipletului ⁷F.

Panelul (3d) oferă o vizualizare a "spațiului activ" în seria de calcule PW-DFT cu ocupări orbitale cotrolate. Aceștia nu sînt propriu zis orbitali, ci diferențe de densitate proiectate pentru a reproduce excedentul de densitate β în orbitale moleculare de tip f. Prin urmare, nu se obține semnul funcției. Se pot observa contururi cu șase sau opt lobi, sugerînd astfel că are loc acomodarea electronului β în orbitale de tip f, validînd procedura adoptată.

Obiectiv 2. Noi perspective și investigații prospective în materialele fosforescente pe bază de lantanide. Studii de caz selectate.

Am selectat pentru acest subiect un sistem foarte convenabil sondării academice, datorită simetriei ridicate (cubice, O_h) a centrului lantanidic, tratînd luminescența europiului divalent dopat în rețea cubică SrCl₂. [A11] Sistemul și tratamentele aplicate sînt schițate în figura 4. Conținutul celulei, {EuSr₃₁Cl₆₄}, avînd în centru ionul Eu(II), corespunde unui nivel de dopaj ~3%. Folosind codul *Quantum Espresso*, PW-DFT am identificat o opțiune foarte utilă problemei în cauză, permițînd emularea unei stări de promovare orbitală, prin artificiul duplicării nivelului Fermi, forțînd astfel interdicția considerării stărilor excitate în DFT. Calculul optimizează populațiile orbitale fracționare ale benzilor de frontieră, propunînd o redistribuire valență-conducție ce ar corespunde primei stări excitate. Din cîte știm, această caracteristică nu a mai fost exploatată în probleme de luminescență. figura 4b arată densitățile de stări (DOS) în forma fundamentală, iar 4b' în cea excitată. Caseta 4c arată luminescența simulată cu datele calculate.

Figura 4. Sistemul Eu@ScCl_{2:} celula cu ionul dopat în centru; (b) și (b') curbele DOS în stare fundamentală și excitată; (c) Simularea convoluției tranzițiilor f-d (ca inset, spectrul experimental).

Obținem un rezultat foarte interesant: distanțele metal ligand apar ușor contractate în forma excitată. Aceasta este contrar situațiilor cunoscute din studiile de luminescență pe sisteme moleculare, covalente. Anume, excitarea este asociată cu dobîndirea unei porții de anti-legătură, din transmutarea contribuțiilor de legătură existente în forma fundamentală, aceasta atrăgînd – îndeobște – tendința măririi distanțelor de legătură. Studiind detaliile datelor de calcul, am identificat mecanismul acestui rezultat. Electronii f, deși determină proprietățile optice și magnetice, nu contribuie la legătura chimică. În schimb, legătura din sistemele lantanidice este practic asigurată de orbitalele virtuale de origine 5d, ce funcționează ca acceptori ai densității donate de liganzi. Un atare mecanism este binecunoscut pentru metalele tranziționale, dar nu a

Dr. Fănică Cimpoesu

fost luat în considerație ca relevant pentru lantanide, faptul vădit aici fiind că este însuși mecanismul de formare și stabilizare a compușilor lantanidici. În decursul excitării $f^8 \rightarrow f^7 d^1$ un electron f, inițial inactiv în mecanismul de legătură, dobîndește, în orbitalul d, incidență în acest sens, indirect. Anume, exercită o polarizare de spin asupra ligandului, astfel încît legătura dativă în care erau implicați orbitalii d capătă caracter parțial de legătură de cuplaj de spin, de factură covalentă, consolidînd coeziunea sistemului. O asemenea comportare nu a fost studiată în atare termeni, pînă aici.

Figura 5. (a) celula elementară și (a') multiplicată a sistemulu Tb@K₂GdF₅ cu concentrația Tb=25%; (b) și (b') geometriile optimizate în stare fundamentală Tb(f⁸), respectiv excitată Tb(f⁷d); (c) și (c') diagramele de densități de stări (DOS) pentru situațiile respective specificate; (d) celula elementară lărgită și rezultatele DOS pentru sisteml extins, cu Tb(f⁸), în concentrație 2.5%.

În mod similar a fost considerat dopajul de Tb(III) în rețele de K₂GdF₅, pentru care datele experimentale sugerează proprietăți optice interesante, datorate promovării orbitale $f^8 \rightarrow f^7 d$. Spre comparație, am considerat și situația ipotetică a dopării în K₂LuF₅, pentru a avea un reper cu rețea gazdă diamagnetică. Figura 5 ilustrează datele modelării pentru dopajul Tb@K₂GdF₅, la concentrație ridicată în partea stîngă și medie și redusă, în panelul din dreapta. Starea excitată a putut fi emulată doar pentru sistemul mai simplu, de concentrație ridicată. Evidențiem variațiile de geometrie discutate, mici dar evidente: distanțe Tb-F între 2.23 - 2.33 Å pentru celula în stare fundamentală și 2.18 - 2.29 Å pentru sistemul excitat. Curbele densității stărilor de bandă (DOS- Density of States) evidențiază diferența subtilă între orbitalele de spin α (în albastru) vs. β (în roșu), datorată polarizării nete de spin α . Diferențele specifice excitării sînt vizibile în segmentele rescalate: în (c) vîrful negativ este atribuibil electronului β din configurația $f^8=f^{7\alpha}f^{\beta}$ a Tb(III), iar tiparul cu două vîrfuri pozitive și unul negativ din (c') sugerează că promovarea orbitală are loc preponderent în pandantul spinului pozitiv, $f^8d = f^{6\alpha}f^{\beta}d^{\alpha}$. Pentru sistemul extins nu s-a putut realiza optimizarea stării excitate, din cauza problemelor de convergență.

O hibridizare a obiectivelor prezentului proiect cu direcții de înalt interes, interceptate din literatura recentă și colaborările internaționale o reprezintă tema emisiei de lumină polarizată din centre chirale. Intre sistemele de acest tip, lantanidele prezintă cele mai înalte randamente. Descifrarea acestui mecanism este o extensie, pe un nou nivel de complexitate, a problemelor deja rezolvate în cercetarea dezvoltată în acest proiect. Anume, emisia polarizată a lantanoizilor implică interacții între componentele orbitale 4f si 5d, acesta fiind mecanismul prin care tranzițiile de interes dobîndesc intensitate, proporțională cu elementul non-diagonal, între stări f și d, al dipolului electric. Cealaltă jumatate a poblemei este dată de momentul magnetic, determinat de axele anizotropiei în stările fundamentală și excitate.

Momentul magnetic, cel electric, și stările implicate au determinații cauzale în imbricarea efectelor de cîmp al liganzilor și cuplajul spin-orbită, elemente rezolvate, la nivel de modelare fenomenologică și calcul ab initio în acest proiect. Emisia de lumină polarizată este, în primă instanță, echivalentă descrierii simultane a proprietăților optice și magnetice, know-how deja deținut, plus definirea mecanismului condiționării lor mutuale, în curs de implementare. În plus, pentru un supliment de miză, am luat în considerare efectul dynamic de tranfer de chiralitate în rețele de tip perowskit, luînd ca exemplu sistemul (MU)KCe(O₂NO)₈ (unde MU reprezintă cationi derivați din methyl-urotropinium), preluat din J. Am. Chem. Soc. 2020, 142, 545-551.

W For Dr. Fănică Cimpoesu

Figura 6. Tratamentul de cîmp al liganzilor în probleme de transfer dinamic de chiralitate. (a) rețeaua (MU)KCe(O₂NO)₈. (b) unitatea [Ce(O₂NO)₆]³⁻ (c) schema orbitalelor liganzilor corespunzînd parametrilor AOM e_{σ}^{0} si e_{π}^{0} . (d) orbitale canonicale CASSCF (e) stări CASSCF-ligand field pentru sisteme model.

În urma calculelor CASSCF, stările unității lantanidice pot fi descrise cu setul restrins de parametri AOM $e_{\sigma}^{0} = 275.7 \text{ cm}^{-1}$ și $e_{\pi_{\perp}}^{0} = 103 \text{ cm}^{-1}$, influența retelei fiind adăugată prin perturbație electrostatică. Efectele dinamice și entropice determină comportament multiferoic, cu modificarea simultana a proprietăților electrice și magnetice, prin tranziție de la o fază chirală și polară spre una racemică și nonpolară, la ridicarea temperaturii. Tehnica de modelare aferentă componenței entropice a fost pusa la punct în [A6].

Obiectiv 3. Calcule de funcții de undă multi-determinant pe modele de tip cluster cu lantanide.

Tratamentele de bandă, via DFT, descrise anterior, sînt practic indispensabile în tentativa optimizării geometrice a sistemelor dopate, iar modelarea însăși este o cale valoroasă, în atingerea acestui deziderat, furnizînd detalii microscopice inaccesibile experimental. Totuși, deoarece abordarea DFT are limitări intrinseci, descrierea pe calea metodelor multi-configuraționale din Wave Function Theory (WFT) este preferabilă, de cîte ori e posibil, anume cînd sistemul este molecular (unitate coordinativă discretă), ori dacă este rezonabil un decupaj de tip cluster, din aranjamentul cristalin. Reluăm în acest cadru modelarea ionului Eu(II) în înconjurare cubică, întîlnit în sistemul dopat, Eu@SrCl₂ anterior menționat.[A11]

Figura 7. Rezultatele calculelor CASSCF/NEVPT2 pentru: a) starea fundamentală 4f⁷ (albastru) și starea excitată 4f⁶5d¹ (linia roșie); b) stările sextet; c) panel sus: diferite orientări ale unității coordinative într-o înconjurare de atomi pseudopotențiali și sarcini punctuale de dimensiunea celulei cubice; panel jos: clusterul molecular neutru [EuSr₁₈Cl₃₈], în simetrie octaedrică; d) orbitalii canonici f (partea de jos) și orbitalii canonici d (partea de sus); e) rezultatele calculelor CASSCF(7,12) pe stările excitate 4f⁶5d¹, sugerînd descendența lor din promovările orbitale 4f⁶eg și 4f⁶t_{2g}.

Sistemul minimal este unitatea $[EuCl_8]^{6-}$, nivelul următor de complexitate constînd în introducerea într-un cluster format din atomi pseudopotențiali ai unui sistem neutru {Sr₁₂Cl₂₄} cu sarcini atomice luate din analiza de populație a calculelor de bandă (+1.834 pentru Sr și -0.917 pentru Cl) și din sarcini punctuale. Tratamentul WFT pe clusterul încorporat s-a realizat cu o setare CASSCF(7,12) (șapte electroni în spațiul activ ce conține cele 7 orbitale f și cele 5 orbitale d), urmată de incrementele perturbaționale de ordinul doi NEVPT2. În figura 7a) se observă o valoare mai mică a legăturii la echilibru Eu-Cl în prima stare excitată 4f⁶5d¹ (R_{Eu-Cl} = 3.136 Å) în comparație cu lungimea de legătură optimizată a stării fundamentale (R_{Eu-Cl} = 3.188 Å). Figura 7b conține stările de spin sextet rezultate din stări excitate 4f⁷ și 4f⁶5d¹.

4 For

Un alt grad de complexitate se atinge tratînd un cluster suficient de mare la nivel de mecanică cuantică, sistemul acesta fiind reprezentat în figura 7c). O prezentare generală a sistemului modelat și a stărilor electronice rezultate sunt prezentate în Figura 7d) și 7e).

Rezultatele WFT pe clusterul [EuSr₁₈Cl₃₈] par să atingă un nivel comparabil cu datele experimentale din luminescență și cu rezultatele din calcule de bandă. Astfel, cele mai joase stări excitate calculate, după adăugarea interacțiunii spin-orbită, sunt aproape de 25000 cm⁻¹, această valoare regăsindu-se și în experiment, dar și în modelarea stărilor solide.

Stările excitate sunt divizate în două seturi atribuibile celor două tranziții $4f^7 \rightarrow 4f^65d^1$, și anume în subseturile $\{t_{1u}+t_{2u}+a_{2u}\} \rightarrow e_g$ și $\{t_{1u}+t_{2u}+a_{2u}\} \rightarrow t_{2g}$ (vezi dreapta figurii 7). Divizarea în interiorul fiecărui grup este modulată de scindarea relativ mică datorată cîmpului liganzilor, în timp ce distanța dintre baricentrele celor două secvențe, de aproximativ 27500 cm⁻¹ și 37000 cm⁻¹, poate fi considerată ca o măsură directă a scindării octaedrice 10Dq în cub, în jur de 9500 cm⁻¹.

Pentru a estima schema cîmpului liganzilor pentru straturile 4f și 5d, am realizat experimente numerice ce au avut ca rezultat următoarea scindare LF a orbitalelor f, dupa etichetele simetriei O_h : $\varepsilon(t_{2u})=0$, $\varepsilon(t_{1u})=136.8 \text{ cm}^{-1}$ și $\varepsilon(a_{2u})=287.2 \text{ cm}^{-1}$. O extensie a modelării ar putea privi interacția de schimb între centre purtătoare de orbitali f și d, o problemă complicată în prealabil abordată colateral, pe sisteme conținînd doar centre d. [A9], [B1]

Un alt sistem abordat pe calea metodelor multiconfiguraționale este compusul coordinativ schițat în Figura 8. Acest compus, de tip cation complex - anion complex, a fost sintetizat de colaboratorii noștri, vizînd realizarea unei sfere coordinativă cît mai simple și totodată de sine stătătoare, cu efecte împachetare și rază lungă (long-range) prezumabil cît mai reduse. Unitatea coordinativă [Tb(NO₃)₅]²⁻îndeplinește aceste cerințe, permițind investigarea sistematică a componentelor concurente, în calcul. Simularea spectrală prezentată în partea de jos a casetei (d) a figurii 8 se află în bună concordanță cu profilui înregistrat experimental, redat în partea superioară a panelului (d).

Figura 8. a) Structura moleculară pentru compusul [Cu(dmen)₂][Tb(NO₃)₅] rezolvata prin difracție de raze X pe monocristal. (b) Mecanismul luminescentei in prin relaxarea $d \rightarrow f$. (c) Spectrele de luminescență experimentale. (d) Calculul scindarii CASSCF-SO pentru termenul ⁷*F* datele experimentale multipletilor ⁷*F_J* pentru unitatea [Tb(NO₃)₅]⁻².(e) Orbitalii moleculari canonici calculati prin metoda CASSCF pentru aceeasi unitate.

of For Dr. Fănică Cimpoesu

O4. O nouă generație de modele de cîmp al liganzilor. Modele LF de Hamiltonian efectiv nonholoedric.

Propunem o formă generalizată a Hamiltonianului de cîmp al liganzilor (LF- Ligand Field) prin "inginerie inversă", presupunînd cunoscute, pe calea *ab initio*, valorile și vectorii proprii ale problemei considerate:

 $\widehat{H}_{eff} = \sum_{i} |\psi_i\rangle \varepsilon_i \langle \psi_i |$.

(2)

Ca primă ipoteză, vom considera ca valori proprii energiile orbitale rezultate din calcule, ε_i , și ca vectori proprii relaționați, orbitalii moleculari ψ_i . Notînd separat termenii pentru centrul metalic și ligand, prin μ , respectiv λ , scriem funcțiile secvenței LF astfel:

 $\psi_i(x, y, z) = \sum_{M \in metal \ ion} c_{iM} \cdot \mu_M(x, y, z) + \sum_{L \in ligands} c_{iL} \cdot \lambda_L(x - X_L, y - Y_L, z - Z_L)$ (3)

Componentele atomice sînt de tip gaussian (Gaussian type orbitals-GTOs). Aceste tipuri de orbitale sînt tratate în formatul coordonatelor carteziene locale (x,y,z) ale fiecărui atom, dar pot fi exprimate formal și în coordonatele polare echivalente (r,θ,φ) . Astfel, putem dihotomiza componentele atomice în parte radială și angulară: $\chi(x, y, z) \equiv \chi(r, \theta, \varphi) = R(l, \zeta, r) \cdot Z_{lm}(\theta, \varphi)$. Notația Z_{lm} reprezintă conversia armonicelor sferice complexe Y_{lm} în forme reale. Partea radială a GTO este

$$R(l,\zeta,r) = \mathcal{N}(l,\zeta) \cdot r^{l} \exp(-\zeta \cdot r^{2}); \\ \mathcal{N}(l,\zeta) = 2^{\frac{2l+5}{4}} \zeta^{\frac{2l+3}{4}} / \sqrt{\Gamma(l+3/2)},$$
(4)

unde Γ este funcția factorială generalizată pentru variabile reale (funcția Gamma).

Pentru a obține un operator de tip LF, orbitalii moleculari ψ_i trebuie integrați pe coordonate radiale, luînd ionul metalic în origine. Ca o primă aproximare, se pot lua în considerare doar orbitalii atomici ai atomului metalic, deoarece aceștia sînt, de obicei, partea principală a funcțiilor moleculare de tip LF. În acest caz, integrarea se poate face analitic, obținînd un operator LF generalizat:

$$V_{LF}^{M}(\theta,\varphi) = \sum_{M_1} \sum_{M_2} \varepsilon_i \ c_{iM_1} c_{iM_2} \cdot S_{M_1,M_2} \cdot Z_{l_{M_1}m_{M_1}}(\theta,\varphi) Z_{l_{M_2}m_{M_2}}(\theta,\varphi) ,$$
(5)

$$S_{M_1,M_2} \equiv S(l_{M_1}, \zeta_{M_1}, l_{M_2}, \zeta_{M_2}) = \int_{r=0}^{\infty} R(l_{M_1}, \zeta_{M_1}, r) \cdot R(l_{M_2}, \zeta_{M_2}, r) r^2 dr \quad , \tag{6}$$

$$(l_1, \zeta_1, l_2, \zeta_2) = \frac{1}{2} \mathcal{N}(l_1, \zeta_1) \mathcal{N}(l_2, \zeta_2) \cdot \Gamma\left(\frac{l_1 + l_2 + 3}{2}\right) / (\zeta_1 + \zeta_2)^{\frac{l_1 + l_2 + 3}{2}}.$$
(7)

Produsul a două armonice sferice cu numere cuantice l_1 și l_2 poate fi dezvoltat ca sumă de funcții sferice care rulează între $|l_1 - l_2|$ și l_1+l_2 . În principiu, se poate realiza expansiunea analitică și cu părțile de ligand incluse, însă, din motive practice, am apelat la integrarea numerică. Astfel, am împrumutat o tehnică utilizată în producerea pseudo-potențialelor folosite calculele de stare solidă. Idee este de a exprima o integrală radială ca o sumă peste un set fix de puncte, factorizate prin ponderi specifice:

$$\int_{r=0}^{\infty} f(r)dr \approx \sum_{m=1}^{n_{max}} w_m \cdot f(r_m) .$$
(8)

Am folosit o grilă de puncte mai densă la origine, care se rarefiază pe măsură ce crește distanța față de origine:

$$r_m = \delta r_0 \frac{exp(mh) - 1}{exp(h) - 1} , w_m = h \cdot \delta r_0 \frac{exp(kh)}{exp(h) - 1} .,$$
(9)

cu $\delta r_0 = 0.001$ Bohr și h=0.0211, obținînd $n_{max} = 254$ și $r_{max}=10$ Bohr. Funcțiile supuse integrării numerice prin ecuația descrisă anterior se pot scrie, pentru termenii metal-ligand astfel:

$$f(\mathbf{r}) = R(l_M, \zeta_M, \mathbf{r}) \cdot R(l_L, \zeta_L, |\mathbf{r} - \mathbf{R}_L|) \cdot Y_{LM}^{real}(\theta_L, \varphi)$$
(10)

unde R_L marchează poziția atomului L ligand. Reprezentarea centrilor L face ca armonicele sferice de pe acestea să capete o dependență de partea radială, din referențialul ionului central. Termenii ligand-ligand pot fi neglijați, din cauza coeficienților lor mici și a suprapunerii practic nule a funcțiilor lor radiale.

Finalitatea schemei se atinge exprimînd rezultatele numerice prin fitare ca o serie de funcții armonice sferice:

$$\hat{V}_{LF}(\theta,\varphi) = \sum_{k=k_{min}}^{k_{max}} \sum_{q=-k}^{k} B_q^k Z_{k,q}(\theta,\varphi) , \qquad (11)$$

Generalizarea constă în faptul că permitem un spectru larg de funcții sferice, de la $k_{min}=1$ la $k_{max}=10$. Modelele LF tradiționale sînt limitate, din considerente empiric-fenomenologice, doar la seturile k=2, 4 și 6. Cu un spectru larg de funcții sferice, obținem un sistem supradeterminat de ecuații liniare: $\mathbf{A} \cdot \mathbf{b} = \mathbf{u}$,

Dr. Fănică Cimpoeşu

unde coeficienții care trebuie fitați sînt parametrii generalizați LF, B_k^q , concatenați într-o singură coloană, pentru k seturi succesive: $b_{k^2+k+q} \equiv b_{k^2+k+q,1} = B_k^q$.

Datele care alimentează problema sînt valorile potențialului estimat pe o grilă de coordonate polare $\{\theta_i, \varphi_j\}$, reordonate prin concatenarea liniilor matricei v_{ij} (particularizările potențialului din ecuația 14 în coordonatele grilei) într-o singură coloană: $u_{N_{\varphi} \cdot (i-1)+j} \equiv u_{N_{\varphi} \cdot (i-1)+j,1} = v_{ij}$. Factorii de structură sînt obținuți prin estimarea întregului set de armonice sferice reale la grila coordonatelor polare, dispuse în următoarea matrice: $\mathcal{A}_{N_{\varphi} \cdot (i-1)+j,k^2+k+q} = Z_{kq}(\theta_i, \varphi_j)$. În setarea dată, sînt 1200 puncte v_{ij} și 120 de coeficienți B_k^q ale armonicelor sferice, de la $k_{min}=1$ la $k_{max}=10$. Soluția, conform metodei celor mai mici pătrate, este obținută prin pseudo-inversa:

$$\boldsymbol{b} = \boldsymbol{\mathcal{A}}^{\#} \cdot \boldsymbol{u}, \, \boldsymbol{\mathcal{A}}^{\#} = \left(\boldsymbol{\mathcal{A}}^{T} \cdot \boldsymbol{\mathcal{A}}\right)^{-1} \cdot \boldsymbol{\mathcal{A}}^{T}.$$
(12)

Această analiză poate fi aplicată la potențialul calculat sau datelor limitate doar la contribuțiile ionului metalic. În plus, se poate încerca fitarea pe seturile limitate de armonice sferice folosite în formulele LF tradiționale și anume k=2 și 4 pentru elemente de tip d (sistemul [FeF₃]) sau k=2, 4 și 6 pentru cele de tip f (cazul [GdF₃]). Figura 9 prezintă listele concatenate ale coeficienților B_k^q cu k variind de la 1 la 10 și, în interiorul fiecărui domeniu k, q rulînd de la -k la k, k^2+k+q fiind numărul de ordine (redat în scală logaritmică) atribuit parametrului B_k^q .

Figura 9. Fitarea hamiltonianului efectiv LF pentru sistemele [FeF₃] și [GdF₃] printr-o serie generalizată de armonice sferice, cu *k* de la 1 la 10. Valorile parametrilor B_k^q sînt afișate pe verticală, pozițiile pe abscisă fiind redate în scală logaritmică, $log_{10}(k^2+k+q)$.

Graficele din partea inferioară conțin rezultatele fitării în limitele modelelor standard, cele superioare modelarea extinsă, descrisă mai sus, iar cele mediane, rezultatele unei aproximații intermediare, limitînd seturile armonice între k=1 și 6. Deși componentele principale apar deja de la nivelul de bază al modelelor standard, abordarea extinsă arată relativa relevanță a termenilor superiori. Schema poate fi extinsă dincolo de demersul abordat aici, ca cel mai simplă direcție, a asimilării schemei LF cu energiile și funcțiile orbitale. Procedurile descrise aici, aplicate în [A4] implică formalisme matematice avansate dezvoltate suplimentar în [A7, A8]. O contribuție colaterală este și lucrarea [A2].

O5. Un model versatil: atomul mediat sferic în rețea, tratament self-consistent a populației pe straturi.

Dezvoltarea următoare este o aripă simplificată a modelărilor la multi-scală elaborate pe exemplul sistemului Tb@K₂GdF₅ menționat anterior. Idealizarea pornește de la observația că parametrii de cîmp al liganzilor calculați prin modele fiablile de tip WFT sugerează sînt apropiați de rezultate estimate prin aproximația electrostatică. Atunci în probleme de rețele ionice se poate trata explicit cuantic doar ionul lantanidic, în cîmpul

Dr. Fănică Cimpoesu

electrostatic al primei înconjurări, contribuția Madelung a întregii rețele. Pentru acest algoritm am dezvoltat o formulă a energiei corpului atomic, cu populații mediate conform simetriei sferice, în general admisibil fracționare:

$$E = \sum_{l} \sum_{i} p_{l_{i}} h_{l_{i}} + \sum_{l} \sum_{i} \left\{ \frac{1}{2} p_{l_{i}} (p_{l_{i}} - 1) F_{l_{i}l_{i}}^{0} + \left[\frac{4l_{i}+3}{4l_{i}+4} \cdot p_{l_{i}} - \frac{2l_{i}+3}{8l_{i}+8} \cdot p_{l_{i}}^{2} + \frac{2l_{i}+1}{2l_{i}+2} (\sigma_{l_{i}} + 1) \right] J_{l_{i}l_{i}} \right\} + \sum_{l \leq l'} \sum_{l_{i} \neq l'_{i'}} \left\{ p_{l_{i}} p_{l'_{i'}} \left(F_{l_{i}l'_{i'}}^{0} - \frac{1}{2} J_{l_{i}l'_{i'}} \right) - 2\sigma_{l_{i}} \sigma_{l'_{i'}} \cdot J_{l_{i}l'_{i'}} \right\} , \qquad (13)$$

unde, p_{l_i} , sînt populațiile straturilor cu numerele cuantice l_i , iar σ_{l_i} sînt polarizările lor de spin. În termenul monoelectronic h_{l_i} intră și termenii electrostatici. Termenii $F_{l_i l'_i}^0$ sînt partea Coulomb descrisă în prima secțiune, echivalentă cu parametrii Hubbard din formalismul DFT+U., iar $J_{l_i l'_i}$, sînt integrale medii de schimb, accesibile din parametrii Slater-Condon, deasemni menționați anterior. Partea complicată a problemei constă în aceea că forma profilelor este influențată de rețea, problema căpătînd atunci formă iterativă.

Figura 10. Rezultatele modelului atomului mediat sferic in cîmp electrostatic. S-a considerat Tb(III) dopat în clusteri de mărime progresivă decupați din rețeaua K₂GdF₅. (a) Stările orbitale 4f și 5d; evaluările s-au realizat în clusteri respectînd neutralitatea totală a ansamblului. (b) Scindările 4f și 5d relativ la cel mai joasă valoare a multipletului. (c) Orbitalele 4f și 5d obținute ca valori proprii ale estimării electrosttice în clusterul maxim considerat.

Odată atins un profil radial specific stratului investigat, se pot emula termenii b_k ce departajează, în modelarea LF, elementele h_k monolectronice, inițial degenerate.

$$b_k(L) = q_L \int_{r=0}^{\infty} (R(r))^2 \frac{\min(r,R_L)^k}{\max(r,R_L)^{k+1}} r^2 dr = \sum_{i=1}^{n_f} \sum_{j=1}^{n_f} c_i \cdot c_j \cdot N_i \cdot N_j \cdot \left(\frac{1}{R_L^{k+1}} \cdot P_{ij} + R_L^k \cdot Q_{ij}\right),$$
(14)

Pentru această estimare se fitează profilul R(r) în componente Gaussiene (GTO), cu care aplică următoarele dezvoltări analitice.:

$$P_{ij}^{\text{GTO}} = \frac{1}{2} (\zeta_1 + \zeta_2)^{-\frac{1}{2}(n_1 + n_2 + k + 1)} \left(\Gamma \left[\frac{1}{2} (n_1 + n_2 + k + 1), 0 \right] - \Gamma \left[\frac{1}{2} (n_1 + n_2 + k + 1), (\zeta_1 + \zeta_2) R_L^2 \right] \right),$$
(15a)

$$Q_{ij}^{\text{GTO}} = \frac{1}{2} (\zeta_1 + \zeta_2)^{\frac{1}{2}(k-n_1-n_2)} \Gamma[\frac{1}{2}(n_1 + n_2 - k), (\zeta_1 + \zeta_2)R_L^2].$$
(15b)

Aceste dezvoltări metodologice sînt prezentate în [A1]

Figura 10 ilustrează o asemenea aplicație, care dă rezultate satisfăcătoare pentru scindarea în cîmp a orbitalilor f, dar subestimează schema nivelului d. Recunoscînd importanța orbitalelor 5d în coeziunea sistemelor lantanidice am efectuat o investigație colaterală cu ajutorul instrumentelor specifice programuluiui ADF (*Amsterdam Density Functional*). Am realizat o serie de experimente numerice de eliminare sistematică a orbitalilor virtuali. Astfel, eliminarea straturilor neocupate de tip s, p, d și f, provoacă următoarele creșteri de energie: 2.61, 7.57, 68.40, respectiv 8.18, toate valorile fiind în kcal/mol. Se observă preponderența contribuției d, aproximativ 60% din totalul 97.15 kcal/mol realizat la eliminarea tuturor orbitalelor vacante. Aceste rezultate au fost prezentate în [A10]

Concluzii (Rezumat Executiv)

Proiectul este de factură teoretică, plasat la granița domeniilor chimiei computaționale, fizicii cuantice și dezvoltărilor algoritmice, pășind chiar în analiză matematică avansată, cu accent primordial pe inovația metodologică, dar cu miză în dezideratul ingineriei proprietăților și *design*-ului de noi materiale luminescente, potențial aplicabile în tehnologii de salvare a consumului energetic.

Firul roşu este desfăşurat în cele ce urmează. Cele mai multe sisteme dovedite practic utile prin proprietățile de scintilator și conversie a radiației sînt rețele solide conținînd ioni lantanidici. În termeni de modelare, aceste materiale se tratează îndeobște prin calcule de bandă pe calea Density Functional Theory (DFT), folosind ca bază unde plane și reprezentînd corpurile atomice prin pseudo-potențiale. Problema este însă că DFT este limitat la sisteme în stare fundamentală non-degenerată, iar ionii lantanidici prezintă stări quasi-degenerate. În plus luminescența implică și stările excitate, aceste materiale fiind așadar, principialmente, în afara abordabilității prin DFT. Am elaborat un procedeu ce permite extracția parametrilor de interacție monoelectronică (Ligand Field, LF) și bielectronică (integralele Slater- Condon) pe calea unor experimente numerice DFT și desfăcînd cutia neagră a datelor din pseudopotențiale. Aceste experimente numerice conduc la parametri ce pot emula date extra-DFT, descriind rezonabil întreg sistemul de stări, fundamentală și excitate.

Problemele de luminiscență se tratează cel mai bine în cadrul metodelor multiconfiguționale Wave Function Theory (WFT), dar aici lantanidele au problema unei configurații non-*aufbau*, neuzuale rutinelor de calcul, grupul nostru găsind strategii originale de a depăși dificultățile tehnice impuse de această situație. Am studiat în acest cadru, atît compuși voit simpli, spre a decela sistematic factorii incidenți dar și sisteme complicate, mari și cu miză practică.

Am pus la punct metode Ligand Field generalizate, prin "ingineria inversă" a datelor calcului de chimie cuantică. Modelarea a adus cîteva surprize.

Am constatat că așa numitul efect de holohedrizare (dobîndirea unei simetrii de inversie artificiale) din aplicarea modelelor standard de cîmp al liganzilor este de un fapt fizic real, nu un artefact determinat de limitele modelului.

Am determinat că pentru rețele de lantanide ionice aproximația electrostatică emulează bine cîmpul liganzilor. Această idee a fost negată mult timp, dar în baza datelor pentru sisteme cu orbitale d, în absența modelării fiabile a sistemelor f.

Am identificat mecanisme noi de legătură a ionului lantanidic în moleculă și rețea. Inițial, pe motive empirice convingătoare, regimul de legătură al lantanidelor a fost considerat pur ionic. Analizele noastre au decelat rolul esențial al donării dinspre liganzi în orbitale 5d vacante. Regimul rămîne, preponderent non-covalent, dar detaliul este semnificativ.

Cu această ocazie, am dedicat atenție colaterală problemei generale a efectelor non-covalente, descoperind un detaliu tehnic de importanță majoră pentru problemele de chimie structurală supramoleculară. Anume, prin serendipitate, am realizat că în calculele de unde plane (PW-plane waves) lipsește așa numita eroare de suprapunere a bazelor (BSSE, basis set superpozition error), fapt rămas, după știința noastră, încă neobservat, deoarece comunitățile utilizînd coduri de unde plane nu sînt direct interesate de interacții non-covalente, iar, pentru chimia computațională moleculară și supramoleculară, metodele PW nu sînt un instrument comun.

Am identificat, prin calcul, un fenomen anomal, care a scăpat cunoașterii comune, atît experimentale cît și teoretice, pentru că, în - primul rînd- contrazice paradigma curentă, investigarea în această direcție fiind lipsită de fermitate și, prin urmare, și din lipsă de date. Anume, am constatat că în stările excitate de configurație $f^{n-1}d$, implicate în luminescența lantanidelor distanțele metal-ligand sînt mai scurte decît în configurațiile fundamentale f^n . În restul manifestărilor fotofizice, are loc o alungire a legăturilor, după excitare, din cauza pierderii de energie coezivă. Datorită implicării "secrete" a stratului 5d în legătura ionilor lantanidici, promovarea $4f \rightarrow 5d$ întărește capacitatea de interacție coezivă.

Pe platforma atinsă aici se intrevăd căile unor noi investigații provocatoare. Cea mai promițătoare este implicarea în tematica sistemelor multi-feroice și emisiei controlate de lumină polarizată din centre chirale. Tehnic aceasta corespunde hibridizării unui know-how de modelare a proprietăților optice (adică obiectul actualului proiect) cu cel al magneto-chimiei computaționale, domeniu al preocupărilor precedente,

Dr. Fănică Cimpoeşu

deci o cale naturală de urmat. Vom continua colaborarea internațională dezvoltată cu prof. A. Stroppa, W. Urland și M. Suta.

Am realizat numărul preconizat de lucrări, rămînînd unele în așteptare (două în evaluare, o alta realizată în grad 70% ce va fi finalizată în decurs de 1-2 luni). Alte cîteva lucrări ce vor apare în urma încheierii proiectului, fiind în același siaj tematic, vor primi recunoașterea cuvenită în secțiunea de suport financiar.

Am realizat doar un capitol de carte din cele două promise, dar vom lua în considerare ca la următoarea ocazie de a construi o monografie, să includem recunoașterea suportului acestui proiect.

Un workshop online cu participare internațională este programat în 3 Decembrie.

Proiectul a realizat, în conjunctură forțată de piedici financiare impuse intempestiv, în decursul anului 2023, economii majore, de aproximativ 50000 RON, ce au perturbat buna funcționare generală. În decursul anului 2024 se preconizează un retur de aproximativ 10000 RON.

Articole

[A1] Ana Maria Toader, Bogdan Frecus, Corneliu I. Oprea, Maria Cristina Buta, *Physchem* 2023, *3*, 270–289. doi.org/10.3390/physchem3020019

[A2] Alice Mischie, Ana Maria Toader, Maria Cristina Buta, Fanica Cimpoesu, *Computational and Theoretical Chemistry*, 2023, *1230*, 114370. doi.org/10.1016/j.comptc.2023.114370

[A3]Ana Maria Toader, Maria Cristina Buta, Fanica Cimpoesu, *Chemistry Journal of Moldova* 2023, *18*(2), 78-86. doi.org/10.19261/cjm.2023.1146

[A4] Ana Maria Toader, Maria Cristina Buta, Fanica Cimpoesu, Adela Mihai, *Symmetry* 2024, *16*, 22. doi.org/10.3390/sym16010022

[A5] Ana M. Toader, Maria C. Buta, Werner Urland, Alessandro Stroppa, Fanica Cimpoesu, *Computational Materials Science* 2024, 235, 112742. doi.org/10.1016/j.commatsci.2023.112742
[A6] H. Zheng, A. Ghosh, M. J. Swamynadhan, Q. Zhang, W. P. D. Wong, Z. Wu, R. Zhang, J. Chen, F. Cimpoesu, S. Ghosh, B. J. Campbell, K. Wang, A: Stroppa, R. Mahendiran, K. P. Loh, *Nature Communications* 2024, *15*, 5556. doi.org/10.1038/s41467-024-49708-w

[A7] Adela Mihai, Ion Mihai, A Note on a Well-Defined Sectional Curvature of a Semi-Symmetric Non-Metric Connection. *International Electronic Journal of Geometry* 2024, 17(1), 15-23 DOI.ORG/10.32323/IEJGEO.602178

[A8] Stefan-Cezar Broscateanu, Adela Mihai, Andreea Olteanu, Note on the Infinitesimal Bending of a Rectifying Curve. *Symmetry* 2024, *16*, 1361. doi.org/10.3390/sym16101361

[A9] L. Pricop, G. Ionita, N. Stanica, C. Enachescu, R. Tanasa, M. Ferbinteanu, *Journal of Coordination Chemistry*, 2024, acceptat. doi.org/10.1080/00958972.2024.2432585

[A10] Ana Maria Toader, Maria Cristina Buta, Fanica Cimpoesu, and Marilena Ferbinteanu ChemPlusChem, acceptat. DOI:10.1002/cplu.202400632

[A11] Fanica Cimpoesu, M. Cristina Buta, Ana M. Toader, Ionel Humelnicu, Werner Urland, Dumitru-Claudiu Sergentu, Markus Suta, *Inorg. Chem.*

(expediat, preprint 10.5281/zenodo.14218515

[A12] Ana Maria Toader, Maria Cristina Buta, Dumitru-Claudiu Sergentu, Alessandro Stroppa, Fanica Cimpoesu, On the Account of intra- and inter- Molecular Bonding in Lanthanide Compounds preprint DOI 10.5281/zenodo.14225779

Capitol de carte.

[B1] Fanica Cimpoesu, Maria-Cristina Buta, Ana Maria Toader and Gabriela Ionita. The Spin Chemistry of Nitroxide-Based Organic Biradicals: EPR Data and Computational Experiments. In *Fundamental and Biomedical Aspects of Redox Processes*, pp. 111-142. IGI Global, 2023.

W For

Dr. Fănică Cimpoesu

ANEXE: Coduri utilizate

Anexa 1. Cod de algebră în limbaj Mathematica, ce poate genera implementarea integralelor bielectronice de tip f-d în termeni Slater-Condon.

```
Do[{monopos[i_j_j] = Max[i_j]+((Max[i_j] - 1)/2) + Min[i_j], bipos[i_j_j][h_, L_] = monopos[monopos[i_j], monopos[k, 1]])_]
Y[L_, m_, t_, f_] = SphericalHarmonixY[1, m, t, f]; Yc[L_, m_, t_, f_] = (-1)^m*SphericalHarmonixY[1, -m, t, f]
sh=(2,3);sh=("d","f");ns=Length[sh]
Do[{Do[If[(iorb[io] = 1 || iorb[jo] = 1 || iorb[jo] = 1 || iorb[lo] == 1) && (iorb[io] == 2 || iorb[lo] == 2 |,
(is = iorb[io], mi = morb[io], js = iorb[jo], mj = monopos[k, 1s], namf[Min[ks, 1s], Max[ks, 1s]][1],
        biel[io, jo][ko, 1o] = Expand[Sum[If[monopos[is, js] >= monopos[ks, 1s], namf[Min[ks, 1s], Max[ks, 1s]][1], m(3, 0, 0] + (Yel, m, 0], 0], (0, 0, 0] = K2 mak + nl + m = 0,
        Simplify[Integrate[Integrate[Vc[sh[[ks]], mi, 0], 0] + (Yel, [ls]], mj, 0], 0] + (Yel, m, 0], 0], (0, 0, 0] + (0, 0, 0]]] +
        Simplify[Integrate[Integrate[Vc[sh[[ks]], mk, 02, 02] + Y[ih[[ls]], m], 02, 02] + (l, m, 0], 0], (02, 0, 2+i)] + Sin[02], (02, 0, 0, 0]]], 0],
        (1, Min[Abs[sh[[is]] - sh[[is]], " m, "; ", shn[[ks]], " m, mi, "; ", shn[[ks]], " m, mj, "; ", shn[[ls]], " m, mi, "; ", shn[[ks]], " m, mi, "; ", shn[[is]], " m, mi, "; ", shn[[is]], " mi, "; ", shn[[is]], " mi, "; ", shn[[is]], " m, mi, "; ", shn[[is]], " m, mi, "; ", shn[[is]], ", mi, "; ", shn[[is]], ", mi, "; ", shn[[is]], ", mi, ", ", mi, "; ", shn[[is]], ", "
```

Anexă 2. Parte a ingredientelor de calcul pentru subrutina matlab-octave pentru evaluarea parametrilor generalizați Slater-Condon. Codul este trunchiat la numărul de ordine maxim k=6.

<pre>function rkg=rkgsto1(bas1,bas2)</pre>	Rk=
	(240*(a1^4+7*a1^3*a2+21*a1^2*a2^2+7*a1*a2^3+
<pre>ncompl=length(bas1(:,1));</pre>	a2^4))/(a1^3*a2^3*(a1+a2)^7);
ncomp2=length(bas2(:,1));	case '4 4 2'
1 she 11 = bas 1(1,2);	Rk=
lshell2=bas2(1,2):	$(720*(a1^2+7*a1*a2+a2^2))/(a1^2*a2^2*(a1+a2)^7)$
lmin=abs(lshell1-lshell2):	(180 (ar 2)) ar ablar 2)// (ar 2 ab 2 (ar)ab/ //
kont-0.	$Pk = 50/0/(a1 \pm 2) + 2) + 7)$
for k-lmin.2.lmay	(a_1, a_2) (a_1, a_2) (a_1, a_2) (a_1, a_2)
kont-kont+1.	
KONC-KONCIT,	(24 ± /5 ± 20 ± 20 ± 20 ± 20 ± 20 ± 20 ± 20 ± 2
for kol=l.ncompl	(24^(J^dI JT30^dI 4^dZT40^dI 3^dZ ZT
for kal-1:ncomp1	50°ai 2°az 5tiz°ai°az 4tz°az 5))/(ai 5°az 2°(ai
IOT KDI=I:ncompz	$(\pm a_2)^{-1}(0);$
for ka2=1:ncomp1	case '5_2_1'
IOT KDZ=1:ncompz	KK=
<pre>nal=bas1(ka1,1);lal=bas1(ka1,2);zal=bas1(ka1,3);</pre>	(36*(20*a1^3+15*a1^2*a2+6*a1*a2^2+a2^3))/(a1^4*
nb1=bas2(kb1,1);1b1=bas2(kb1,2);2b1=bas2(kb1,3);	a2*(a1+a2)^6);
na2=bas1(ka2,1); la2=bas1(ka2,2); za2=bas1(ka2,3);	case '5_3_0'
nb2=bas2(kb2,1);1b2=bas2(kb2,2);zb2=bas2(kb2,3);	Rk=
	(48*(5*a1^6+35*a1^5*a2+105*a1^4*a2^2+
f1=sqrt((2*za1)^(2*na1+1)/factorial(2*na1))*sqrt	105*a1^3*a2^3+63*a1^2*a2^4+21*a1*a2^5+3*a2^6))/
((2*zb1)^(2*nb1+1)/factorial(2*nb1));	(a1^5*a2^3*(a1+a2)^7);
f2=sqrt((2*za2)^(2*na2+1)/factorial(2*na2))*sqrt	case '5 3 1'
((2*zb2)^(2*nb2+1)/factorial(2*nb2));	RK=
	(144*(5*a1^4+35*a1^3*a2+21*a1^2*a2^2+7*a1*a2^3+
if nal+nbl>na2+nb2	a2^4))/(a1^4*a2^2*(a1+a2)^7);
in1=na1+nb1; in2=na2+nb2;	case '5 3 2'
a1=za1+zb1; a2=za2+zb2;	Rk=
<pre>nln2k=strcat(int2str(in1),' ',int2str(in2),' ',i</pre>	(240*(21*a1^2+7*a1*a2+a2^2))/(a1^3*a2*(a1+a2)^7
nt2str(k)););
else	case '5 4 0'
in2=na1+nb1; in1=na2+nb2;	RK=
$a^{2}=za^{1}+zb^{1}; a^{1}=za^{2}+zb^{2};$	(144*(5*a1^7+40*a1^6*a2+140*a1^5*a2^2+
nln2k=strcat(int2str(in1).' '.int2str(in2).' '.i	280*a1^4*a2^3+224*a1^3*a2^4+112*a1^2*a2^5+32*a1
nt2str(k)):	*a2^6+4*a2^7))/(a1^5*a2^4*(a1+a2)^8);
end	case '5 4 1'
	RK=
switch n1n2k	(720*(2*a1^5+16*a1^4*a2+56*a1^3*a2^2+
case '2 2 0'	$28*a1^{2}*a2^{3}+8*a1*a2^{4}+a2^{5}))/(a1^{4}*a2^{3}*(a1+a2))$
Bk=	1^8):
$(2*(a1^2+3*a1*a2+a2^2))/(a1^2*a2^2*(a1+a2)^3);$	case 15 4 21
Case 12 2 11	RF=
$RV = -\frac{6}{4} \left(\frac{1}{2} + \frac{2}{2} \right) \left(\frac{1}{2} + \frac$	$(720 \times (7 \times a1^{3} + 56 \times a1^{2} \times a2^{+} + 16 \times a1^{+} a2^{2} + 2 \times a2^{3})) / (a1)$
case 13.2 0'	^3*a2^2* (a1+a2) ^8) :
BF=	case 15 4 31
$(2 \times (3 \times a1^{3} + 12 \times a1^{2} \times a2 + 8 \times a1 \times a2^{2} + 2 \times a2^{3})) / (a1^{3} \times a2^{3})$	$Rk = (5040*(8*a1+a2))/(a1^2*a2*(a1+a2)^8)$
(2 (3 a1 3)) (a1 2 a2) (a1 a2 2) (a1 a2 3)) (a1 3 a)	(3040 (0 a1 a2)) (a1 2 a2 (a1 a2) 0))
$(a_{1}, a_{2}) = 1$	
$P_{k-} = (6*(4*a1+a2))/(a1^2*a2*(a1+a2)^4)$	(2880*(=1^8+9*=1^7*=2+36*=1^6*=2^2+8/*=1^5*=2^3
$1X^{-} (0 (4 a_1 a_2)) (a_1 2 a_2 (a_1 a_2) 4))$	
	126*=1^//*=2^//+8/*=1^3*=2^5+36*=1^2*=2^6+9*=1*=2
(1) * () ^ / / L 5 *) ^ / 3 *) 2 + 1 0 *) ^ / 0 *) 0 *) 0 + 5 *) 1 *) 0 *]	(200 ar + az + 104 ar - 5 az - 5150 ar - 2 az - 015 ar - az - 015 ar - 2000 ar - 2 az - 0100 ar - 2000 ar - 2 az - 0100 ar - 2000 ar - 2 az - 0100 ar - 2000 ar
(12)(a1 + 1) (a1 - 2 a2 + 1) (a1 - 2 a2 - 2) (a1 - a2 - 3) (a1 - a2 -	$\frac{1}{2}$ $\frac{1}$
$a_{2} = \frac{1}{2} \frac{1}$	
	<u> </u>
nn^{-} (2/1*(a1^2+5*a1*a2+a2^2))/(a1^2*a2^2*(a1+a2)^{5}).	(4520°(ai 079°ai 5°a2750°ai 4°a2 2704°ai 5°a2°5 +
(24°(ai 2+0°di°d2+d2 2))/(di 2°d2 2°(di+d2)~0);	T··· 26*-1^2*-2^/+0*-1*-2^5+-2^6))//-1^/*-2^/*/-1+-2
Case = 5 - 5 - 2 - 2	SUMAL ZMAZ 4+9^AL^AZ_S+AZ_U) / (AL_4^AZ_4^ (AL+AZ_
κκ= izu/(ai^az^(ai+az)^5);)

W Fr

case 4_2_0 case 5_2 5 $R\overline{k} =$ Rk =(12* (2*a1^4+10*a1^3*a2+10*a1^2*a2^2+5*a1*a2^3+a2 (10080*(a1^4+9*a1^3*a2+36*a1^2*a2^2+9*a1*a2^3+a ^4))/(a1^4*a2^2*(a1+a2)^5); 2^4))/(a1^3*a2^3*(a1+a2)^9); case '5_5_3' 2_1' case '4 RK= RK= (12*(10*a1^2+5*a1*a2+a2^2))/(a1^3*a2*(a1+a2)^5); (40320*(a1^2+9*a1*a2+a2^2))/(a1^2*a2^2*(a1+a2)^ case '4_3_0' 9); case '5 5 4' Rk= 362880/(a1*a2*(a1+a2)^9); $R\overline{k} =$ (12*(4*a1^5+24*a1^4*a2+60*a1^3*a2^2+.. 45*a1^2*a2^3+18*a1*a2^4+3*a2^5))/(a1^4*a2^3*(a1+ case '6 2_0' 45^a1 _ a2)^6); case '4 3_1' RK= RK= (240*(3*a1^6+21*a1^5*a2+35*a1^4*a2^2+... 35*a1^3*a2^3+21*a1^2*a2^4+7*a1*a2^5+a2^6))/(a1^ 6*a2^2*(a1+a2)^7); case '6_2_1' $\frac{RK}{RK} = \frac{1}{(24*(5*a1^3+30*a1^2*a2+12*a1*a2^2+2*a2^3))/(a1^3)}$ *a2^2*(a1+a2)^6); case '4 3 2' Rk= (120*(6*a1+a2))/(a1^2*a2*(a1+a2)^6); $R\overline{k} =$ (144* (35*a1^4+35*a1^3*a2+21*a1^2*a2^2+7*a1*a2^3) +a2^4))/(a1^5*a2*(a1+a2)^7); case '6_3_0' case '4 4 0' RK= (144* (a1^6+7*a1^5*a2+21*a1^4*a2^2+35*a1^3*a2^3+. Kk=
(720*(2*a1^7+16*a1^6*a2+56*a1^5*a2^2+...
70*a1^4*a2^3+56*a1^3*a2^4+28*a1^2*a2^5+8*a1*a2^6+a2^7))/(a1^6*a2^3*(a1+a2)^8);
case '6_3_1' RK= 21*a1^2*a2^4+7*a1*a2^5+a2^6))/(a1^4*a2^4*(a1+a2) ^7); case '4_4_1' case '6 5 3' Rk= (144*(35*a1^5+280*a1^4*a2+224*a1^3*a2^2+... 112*a1^2*a2^3+32*a1*a2^4+4*a2^5))/(a1^5*a2^2*(a1 +a2)^8); RK= (40320*(9*a1^3+90*a1^2*a2+20*a1*a2^2+2*a2^3))/(a1^3*a2^2*(a1+a2)^10); 3 2' case '6 case '6 5 4' RK= RK= (720*(56*a1^3+28*a1^2*a2+8*a1*a2^2+a2^3))/(a1^4* (362880*(10*a1+a2))/(a1^2*a2*(a1+a2)^10); a2*(a1+a2)^8); case '6_6_0' case '6 _4_0' RK= (86400*(a1^10+11*a1^9*a2+55*a1^8*a2^2+... 165*a1^7*a2^3+330*a1^6*a2^4+462*a1^5*a2^5+330*a RF= (1440*(3*a1^8+27*a1^7*a2+108*a1^6*a2^2+. 165*a1:7/az 5:000 d= 1^4*a2^6+... 165*a1^3*a2^7+55*a1^2*a2^8+11*a1*a2^9+a2^10))/(a1^6*a2^6*(a1+a2)^11); case '6 6 1' pt= 252*a1^5*a2^3+252*a1^4*a2^4+168*a1^3*a2^5+72*a1^ 2*a2^6+... 18*a1*a2^7+2*a2^8))/(a1^6*a2^4*(a1+a2)^9); case '6_4_1' Rk= KK=
(1440* (7*a1^6+63*a1^5*a2+252*a1^4*a2^2+...
168*a1^3*a2^3+72*a1^2*a2^4+18*a1*a2^5+2*a2^6))/(
a1^5*a2^3*(a1+a2)^9);
case '6 4 2' KK=
(120960*(a1^8+11*a1^7*a2+55*a1^6*a2^2+...
165*a1^5*a2^3+330*a1^4*a2^4+165*a1^3*a2^5+55*a1
^2*a2^6+...
11*a1*a2^7+a2^8))/(a1^5*a2^5*(a1+a2)^11); Rk= (1440*(28*a1^4+252*a1^3*a2+108*a1^2*a2^2+... 27*a1*a2^3+3*a2^4))/(a1^4*a2^2*(a1+a2)^9); case '6_6_2' Rk= (241920*(a1^6+11*a1^5*a2+55*a1^4*a2^2+... 165*a1^3*a2^3+55*a1^2*a2^4+11*a1*a2^5+a2^6))/(a 1^4*a2^4*(a1+a2)^11); case '6 6 3' case '6 4_3' Rk= (10080*(36*a1^2+9*a1*a2+a2^2))/(a1^3*a2*(a1+a2)^ 9); Rk =case '6 5 0' (725760*(a1^4+11*a1^3*a2+55*a1^2*a2^2+... Rk= (2880*(6*a1^9+60*a1^8*a2+270*a1^7*a2^2+... 720*a1^6*a2^3+1260*a1^5*a2^4+1050*a1^4*a2^5+600* (123) (a1 41 41 41 42 (3) (a1 42 (3) (a1 + a2) (11); case '6_6_4' RK= a1^3*a2^6+. (3628800*(a1^2+11*a1*a2+a2^2))/(a1^2*a2^2*(a1+a (3) (1); case '6 6 5' RK= 39916800/(a1*a2*(a1+a2)^11); 225*a1^2*a2^7+50*a1*a2^8+5*a2^9))/(a1^6*a2^5*(a1 +a2)^10); case '6_5_1' RK= (4320*(7*a1^7+70*a1^6*a2+315*a1^5*a2^2+... 840*a1^4*a2^3+480*a1^3*a2^4+180*a1^2*a2^5+40*a1* Rk=0; end a2^6+... 4*a2^7))/(a1^5*a2^4*(a1+a2)^10); rkg(ka1,kb1,ka2,kb2,kont)=f1*f2*Rk; case '6 '6_5_2' Rk= end (10080*(8*a1^5+80*a1^4*a2+360*a1^3*a2^2+.. end 135*a1^2*a2^3+30*a1*a2^4+3*a2^5))/(a1^4*a2^3*(a1 end +a2)^10); end end % k

G For Dr. Fănică Cimpoesu

Anexa 3. Codul Fortran 90 care efectuează calculul general Ligand Field (LF) Configuration Interaction (CI) a termenilor spectrali pentru cazul monostrat f sau d și dublu strat fd. *Inputul* constă în matrice LF cu un electron și liste de parametri Slater-Condon corespunzători.

PROGRAM CI_LF	Character(80) :: line
<pre>! Temporary Input Format: ! Read from set.inp ! First line must contain one of the ! following statements ! LFtype=dd, LFtype=ff or LFtype=fd ! Second line gives the number of electrons ! and the domain of spin projections ! ne, msmin, msmax ! Third line gives the number of Ligand Field !(LF) (aka one electron parameters) ! nLFpar ! Fourth line gives the row of LF parameters ! Fifth line gives the row of two electron ! (Slater-Condon) parameters ! (according to the sets from the first line) ! The next lines are looping for nLFpar times ! to read the coefficients of ! each LF parameter, ! considering the the low-diagonal ! format of the LF matrix</pre>	<pre>Integer :: hLrpar, htwoel, htwoelint Real rho Real,Allocatable :: LFpar(:),twoelpar(:),Wparam(:),Hrow(:),E(:), H(:,:),C(:,:) Real,Allocatable :: VLF(:,:),LFdef(:,:),twoelcf(:,:,:,:,:), twoelints(:,:,:) Fact(0) = 1 Do m=1,30 Fact(m)=m*Fact(m-1) End do Open(1,file='set.inp') read(1,'(a80)') line read(1,*) ne, msmin, msmax write(*,*) ne, msmin, msmax call tocap(line) lfstat=0 LFtype=' '</pre>
<pre>Implicit none Integer :: i,j,k,l,m Integer :: kl,ll,k2,l2,kl1,kl2 Integer :: monopos,bipos,spintype Integer :: ne,dg,ncfgs, ncfga,ncfgb, status Real :: msmin,msmax,ms Integer :: ks,lfstat Integer,Allocatable :: comba(:,:),combb(:,:), configs(:,:) Integer,Allocatable :: nms(:),nalpha(:),nbeta(:) Character(2) :: LFtype endif if (!fstat == 0) then</pre>	<pre>if (lfstat == 0) then call searchk(line,'LFTYPE=DD',lfstat) if (lfstat==1) then LFtype='dd' endif endif write(*,*) lfstat if (lfstat == 0) then call searchk(line,'LFTYPE=FF',lfstat) if (lfstat==1) then LFtype='ff' endif twoelints=twoelints+twoelcf(:,:,:,:,m)*twoelpar(m) end do twoelints=0</pre>
<pre>call searchk(line,'LFTYPE=FD',lfstat) if (lfstat==1) then LFtype='fd' endif endif</pre>	Allocate(nalpha(int(msmax-msmin+1))) Allocate(nbeta(int(msmax-msmin+1))) ncfgs=0
<pre>if (lfstat == 0) then call searchk(line,'LFTYPE=DF',lfstat) if (lfstat==1) then LFtype='fd' endif endif</pre>	<pre>do ks=1, int (msmax-msmin+1) ms=msmin+(ks-1) nalpha(ks) = int((2*ms + ne)/2.) nbeta(ks) = int((-ms + ne/2.)) ncfga=Fact(dg)/(Fact(nalpha(ks))*Fact (dg-nalpha(ks))) ncfgb=Fact(dg)/(Fact(nbeta(ks))*Fact</pre>
<pre>write(*,*) lfstat write(*,*) line Select Case (LFType) Case(Iddl)</pre>	<pre>(dg- nbeta(ks))) ncfgs=ncfgs+ncfga*ncfgb end do ! ks write(*,*) "no.of. configurations ",ncfgs</pre>
Write(*,*) "START dd" dg=5; ntwoel=3; Write(*,*) "START ff" Case('ff') dg=7; ntwoel=4;	<pre>Allocate(configs(ncfgs, ne),STAT=Status) configs=0 k=0 do ks=1 int(msmax_msmin+1)</pre>
Case''fd') Write(*,*) "START fd" dg=l2; ntwoel=13; Case(' ') Write(*,*) "STOP" Stop End Select	<pre>ncfga=Fact(dg)/(Fact(nalpha(ks))*Fact (dg-nalpha(ks))) ncfgb=Fact(dg)/(Fact(nbeta(ks))*Fact (dg- nbeta(ks))) ! write(*,*) ks, ms, nalpha(ks), nbeta(ks), ncfga,ncfgb</pre>
<pre>Read(1,*) nLFpar Write(*,*) nLFpar Allocate (LFpar(nLFpar)) Allocate (LFdef(dg*(dg+1)/2,nLFpar)) Allocate (VLF(dg,dg)) Allocate (twoelpar(ntwoel)) Allocate (twoelcf(dg,dg,dg,dg,ntwoel)) Allocate (twoelints(dg,dg,dg,dg))</pre>	<pre>Allocate(comba(ncfga,nalpha(ks)),STAT=Status) Call combinari(dg, nalpha(ks),ncfga, comba) Allocate(combb(ncfgb,nbeta(ks)),STAT=Status) Call combinari(dg, nbeta(ks),ncfgb, combb) do i=1,ncfga do j=1,ncfgb</pre>
<pre>Read(1,*) (LFpar(i),i=1,nLFpar) Write(*,*) (LFpar(i),i=1,nLFpar) Read(1,*) (twoelpar(i),i=1,ntwoel) Write(*,*) (twoelpar(i),i=1,ntwoel)</pre>	<pre>k=k+1 configs(k,1:nalpha(ks))=comba(i,:) configs(k,nalpha(ks)+1:nalpha(ks)+nbeta(ks)) =dg+combb(j,:) end do !j end do !j</pre>
<pre>do m=1,nLFpar do i=1,dg read(1,*) (LFdef(i*(i-1)/2+j,m),j=1,i) write(*,*) (LFdef(i*(i-1)/2+j,m),j=1,i) end do !i end do !m</pre>	Deallocate(comba) Deallocate(combb) end do ! ks
Ranort de Cercetare PCE -1881	Dr. Ežnică Cimpoesu

```
Close(1)
 write(*,*)
VLF=0
do i=1,dg
do j=1,i
do _=1,1
do m=1,nLFpar
VLF(i,j)=VLF(i,j)+LFdef(i*(i-
1)/2+j,m)*LFpar(m)
end do !m
VLF(j,i)=VLF(i,j)
end do !j
 end do !i
!do i=1,dg
!write(*,*) (VLF(i,j),j=1,dg)
!end do !i
Select Case (LFType)
Case('dd')
Write(*,*) "START dd"
call ddbiel(twoelcf)
Case('ff')
Write(*,*) "START ff"
call ffbiel(twoelcf)
Case('fd')
Write(*,*) "START fd"
call fdbiel(twoelcf)
Case(' ')
Write(*,*) "STOP"
 Write(*,*) "STOP"
 Stop
End Select
Function monopos(k, 1)
Integer :: k,l ! input
Integer :: monopos ! output
 If (k <= 1) Then
monopos=1*(1-1)/2+k</pre>
 Else
 monopos=k*(k-1)/2+1
 End Tf
 End Function monopos
 Function bipos(k1, 11, k2, 12)
Integer :: k1,11,k2,12,k11,k12 ! input
Integer :: monopos,bipos ! output
 kl1=monopos(k1,l1)
kl2=monopos(k2,l2)
bipos=monopos(kl1,kl2)
 End Function bipos
 Function phasesign(X) phasesign=X/2-Int(X/2)
End Function
Function spintype(dg, i) Integer :: dg, i, spintype If (i <= dg) Then spintype = 1
 spintype =
Else
 spintype =-1
End If
 End Function spintype
 Subroutine combinari(ns, ne, ncfg, comb)
Integer :: ns, ne, ncfg
Integer :: mm, i, j, VM, cfgindex, status
Integer, Dimension(0:ne):: V
Integer, Dimension(ncfg,ne) :: comb
V=0
 V=0
 comb=0
 mm = 0
 cfgindex = 0
 i = 1

j=0

24 V=0
  VM = ns + 1 - i - ne
mm = 0
 GoTo 21
22 V(j)=V(j)+1
21 Continue
 Call addcomb (mm, cfgindex, ne, i, ncfg, comb,
 V)
 mm = 0
 mm = 0

Do j = ne, 2, -1

If (V(j) < VM) GoTo 22

mm = 1

V(j) = V(j - 1)

End do !j
```

Do i=1,ncfgs write(*,fmt='(50I3)') (configs(i,j),j=1,ne) end do Allocate (Hrow(ncfgs*(ncfgs+1)/2))
call SlaterRules(Hrow,dg, ncfgs, ne, configs,
nLFpar, ntwoel, vlf, twoelints) !do i=1,ncfgs !write(*,*) (Hrow(i*(i-1)/2+j),j=1,i) !end do !i Allocate (E(ncfgs))
Allocate (H(ncfgs,ncfgs))
Allocate (C(ncfgs,ncfgs)) do i=1,ncfgs
do j=1,i
H(i,j)=Hrow(i*(i-1)/2+j)
H(j,i)=H(i,j)
enddo enddo rho=0.0000001 call eign(ncfgs,rho,H,C,E) write(*,*) "E" write(*,fmt='(10F15.2)') E E=E-minval(E) write(*,*) "E.rel" write(*,fmt='(10F15.2)') E End Program CISlaterRules if (j.ge.97.and.j.le.122) line(i:i) = char(j-32) end do k=0do i=1,ncars
if(line(i:i).ne.' ') then k=k+1line1(k:k)=line(i:i) endif end do line(1:k)=line1(1:k) do i=k+1,ncars
line(i:i)=' ' end do return End Subroutine tocap subroutine searchk(line,name,istat)
character*(*) line,name
integer istat,lenl, lenn
character*80_caps lenline=len(line) lennam=len(line)
istat=0 ido i=1,len(line)-len(name)
if (line(i:i+len(name)).eq.name) then istat=1 exit endif end do End Subroutine search Subroutine SlaterRules (Hrow, dg, ncfgs, ne, combs, Subroutine SlaterRules(Hrow,dg, ncfgs, ne, nmono, nbi, monoel, biel) Integer :: i,j,k,l,m Integer :: kl,ll,k2,l2,kl1,kl2 Integer :: ne,dg,ncfgs, ncfga,ncfgb, status Integer :: ne,dg,ncfgs, ncfga,ncfgb, status Integer :: icfg, jcfg, sc, cnt, R, cphase Integer :: Sindex(4), Rindex(4), ord(4) Integer :: cfgi(2*dg), cfgj(2*dg) Integer :: combs(ncfgs, ne) Real :: monoel(dg,dg), biel(dg,dg,dg,dg), Hrow(ncfgs*(ncfgs+1)/2) write(*,*) "enter slatrul"
!do i=1,dg
!write(*,*) (monoel(i,j),j=1,dg)
!end do !i lend do Hrow=0 do icfg = 1, ncfgs do jcfg = 1, icfg sc = 0; cnt = 0; Sindex=0; Rindex=0; ord=0

Raport de Cercetare PCE -1881.

Dr. Fănică Cimpoeșu

```
mm = 0
i = i -
                                                                                              cfgi=0; cfgj=0;
              ,
+ 1
                                                                                                do l = 1, ne
cfgi(combs(icfg, l)) = 1
cfgi(combs(jcfg, l)) = 1
end do ! l
!
    Deallocate(V, STAT=Status)
  V=0
  V=0
If (VM == 0) Return
GoTo 24
End Subroutine combinari
                                                                                              do l = 1, 2*dg
If (cfgi(l) /= cfgj(l)) Then
R = 1
Subroutine addcomb(mm, cfgindex, ne, i, ncfg, comb, V)
                                                                                                        1
                                                                                                R = 1
If ((cfgi(l) - cfgj(l))<0)
cnt = cnt + 1
If (cnt > 4)_Exit
                                                                                                                                                                 R = -1
comb, V)
Integer :: 1, mm, cfgindex, ne, i, ncfg
Integer, Dimension(0:ne) :: V
Integer, Dimension(ncfg,ne) :: comb
If (mm == 1) return
cfgindex = cfgindex + 1
Drail = 1
Drail = 1

                                                                                                Sindex(cnt) =
                                                                                                                           Ŕ
                                                                                                EndIf
end do ! 1
Do l = 1, ne

comb(cfgindex, l) = i - 1 + l + V(l)
                                                                                              Select Case(cnt)
Case(0) ! diagonal CI element; First case of
  end do
                                                                                              Case(0) : dragonal C1 element; First C.
Slater rules
! one electron part
do k = 1, 2*dg
If (cfgi(k) /= 0) Then
! "+ <"; orb$(K); "|f|"; orb$(K); ">";
sc = sc + 1

End Subroutine addcomb
Subroutine tocap(line)
integer i, k, ncars
character*(*) line
character(120) line1
                                                                                                      = sc + 1
If (k > dg) Then
k1 = k - dg;
ncars=len(line)
do i=1,ncars
    j = ichar(line(i:i))
k1 = k;
    End If
                                                                                                      Else
                                                                                             Else

End If

Do k = 1, 2*dg

If (k /= Rindex(1) .and. k /= Rindex(2)) Then

If (cfgi(k) /= 0 .and. cfgj(k) /= 0) Then

If (k > dg) Then

k2 = k - dg
!write(*,*) k1, monoel(k1, k1)
Hrow(icfg*(icfg-1)/2+jcfg) =
Hrow(icfg*(icfg-1)/2+jcfg) + monoel(k1, k1)
                                                                                             k2 = k - dg
Else
k2 = k
End If
If (spintype(dg, Rindex(1)) ==
spintype(dg, Rindex(2))) Then
sc = sc + 1
! sign* "<"; orb$(Rindex(1)); ","; orb$(K); "|g|";
orb$(Rindex(2)); ","; orb$(K); ">";
Hrow(icfg*(icfg-1)/2+jcfg) = Hrow(icfg*(icfg-
1)/2+jcfg) + biel(k1, k2, m1, k2)*cphase
End If
If (spintype(dg, Rindex(1)) == spintype(dg, Rindex(1))
  End If
end do ! k
 two-electron part
do k = 1, 2*dg
do m = k + 1, 2*dg
If (cfgi(k) /= 0 .and. cfgi(m) /= 0) Then
  sc=sc+1
If (k > dg) Then
k1 = k - dg;
                 k – dg;
        Else
k1 = k;
                                                                                                            If (spintype(dg, Rindex(1)) == spintype(dg,
                                                                                              K)) Then
                                                                                                            If (spintype(dg, Rindex(2)) == spintype(dg,
        End If
                                                                                              K)) Then
                                                                                              K) Inen
sc = sc + 1
! -sign* "<"; orb$(Rindex(1)); ","; orb$(K);
"|g|"; orb$(K); ","; orb$(Rindex(2)); ">";
Hrow(icfg*(icfg-1)/2+jcfg) = Hrow(icfg*(icfg-
1)/2+jcfg) - biel(k1,k2,k2,m1)*cphase
End If
       If (m > dg) Then
m1 = m - dg;
        Else
m1 = m;
End If
! Coulomb integral
Hrow(icfg*(icfg-1)/2+jcfg) =
Hrow(icfg*(icfg-1)/2+jcfg) +
biel(k1,m1,k1,m1)
If (spipturge(dg, k) == constant)
                                                                                                           End
                                                                                                                   Ιf
                                                                                                              End If
                                                                                                End If
                                                                                              End do
      If (spintype(dg, k) == spintype(dg, m))
                                                                                                           !k
Then
                                                                                              Case(4)
      sc = sc + 1
                                                                                                 bra and ket differ by two orbital pairs ;
                                                                                             ! bra and ket differ by two orbital pairs ;
Case III in Slater rules
sc = 0
Do k = 1, 4
Do m = k+1, 4
If (Sindex(k) > 0 .and. Sindex(m) > 0) Then
Rindex(1) = Abs(min(Sindex(k), Sindex(m)));
Rindex(2) = Abs(max(Sindex(k), Sindex(m)))
! Exchange integral
Hrow(icfg*(icfg-1)/2+jcfg) =
Hrow(icfg*(icfg-1)/2+jcfg) -
biel(k1,m1,m1,k1)
End If
End If
   end do !m
end do !k
                                                                                              Else
                                                                                              If (Sindex(k) < 0 .and. Sindex(m) < 0) Then
Rindex(3) = Abs(max(Sindex(k), Sindex(m)));
Rindex(4) = Abs(min(Sindex(k), Sindex(m)))
Case(2) ! bra and ket differ by a pair of orbitals ; Second case of Slater rules
                                                                                                          Ènḋ If
  sc = 0
If (Sindex(1) < 0) Then
                                                                                                End If
                                                                                              End do !m
                                                                                              End do !k
Rindex(1) = Sindex(2); Rindex(2) = Abs(Sindex(1))
  Else
                                                                                              ord(1) = 0
Rindex(1) = Sindex(1); Rindex(2) =
                                                                                                  Do
Abs(Sindex(2))
                                                                                              ord(1) = ord(1) + 1
                                                                                                  f (combs(icfg, ord(1)) == Abs(Rindex(1))) Exit
End Do
 End If ord(1) = 0
                                                                                                Τf
    Do
    ord(1) = ord(1) +
                                                                                                  ord(2) = 0
                                       1
    If (combs(icfg, ord(1)) == Abs(Rindex(1)))
                                                                                                  Do
                                                                                              ord(2) = ord(2) + 1
If (combs(icfg, ord(2)) == Abs(Rindex(2))) Exit
ord(3) = 0
Exit
    End Do
  ord(2) = 0
 ord(2) = ord(2) + 1
If (combs(jcfg, ord(2)) == Abs(Rindex(2)))
Exit
                                                                                                  Do
                                                                                                ord(3) = ord(3) + 1
If (combs(jcfg, ord(3)) == Abs(Rindex(3))) Exit
End Do
   End Do
                                                                                                ord(4) = 0
  Ιf
        (Mod(Abs(ord(1) - ord(2)),2)==0) Then
                                                                                                  Do
                                                                                                  ord(4) = ord(4) + 1
  cphase = 1
                                                                                                                                                                          W For
```

Raport de Cercetare PCE -1881.

Dr. Fănică Cimpoeşu

<pre>cpnase = -1 End If If (Rindex(1) > dg) Then k1 = Rindex(1) - dg k1 = Rindex(1) End If If (Rindex(2) > dg) Then m1 = Rindex(2) - dg Else m1 = Rindex(2) End If If (spintype(dg, Rindex(1)) == spintype(dg, Rindex(2))) Then sc = sc + 1 ! one electron part ! sign* "<"; orb\$(Rindex(1)); " f "; End Do k = Abs(ord(1) - ord(3)) + Abs(ord(2) - ord(4)) If (mod(k,2) == 0) Then cphase = 1 Else cphase = -1 Else cphase = -1 End If If (Rindex(1) > dg) Then k1 = Rindex(1) - dg Else k1 = Rindex(1) - dg Else k1 = Rindex(1) End If If (Rindex(2) > dg) Then k2 = Rindex(2) </pre>	
<pre>Lind lf If (Rindex(1) > dg) Then k1 = Rindex(1) - dg Else k1 = Rindex(1) End If If (Rindex(2) > dg) Then m1 = Rindex(2) - dg m1 = Rindex(2) end If If (spintype(dg, Rindex(1)) == spintype(dg, Rindex(2))) Then sc = sc + 1 ! one electron part ! sign* "<"; orb\$(Rindex(1)); " f "; </pre> k = Abs(ord(1) - ord(3)) + Abs(ord(2) - ord(4)) If (mod(k,2) == 0) Then cphase = 1 Else cphase = -1 End If If (Rindex(1) > dg) Then k1 = Rindex(1) - dg Else k1 = Rindex(1) End If If (Rindex(1) - dg Else k1 = Rindex(1) End If If (Rindex(2) > dg) Then k2 = Rindex(2) Else k2 = Rindex(2)	
<pre>k1 = Rindex(1) > dg) Then k1 = Rindex(1) - dg Else k1 = Rindex(1) End If If (Rindex(2) > dg) Then m1 = Rindex(2) - dg Else m1 = Rindex(2) End If If (spintype(dg, Rindex(1)) == spintype(dg, Rindex(2))) Then sc = sc + 1 ! one electron part ! sign* "<"; orb\$(Rindex(1)); " f "; </pre> k2 = Rindex(2) k = Abs(drd(1) - Grd(3)) + Abs(drd(2) - Grd(4)) k = Abs(drd(1) - Grd(3) + Abs(drd(1) - Grd(3)) k = Abs(drd(1) - Grd(3) + Abs(drd(1) - Grd(3)) k = Abs(drd(1) - Grd(3) + Grd(3) + Grd(3) + Abs(drd(1) - Grd(3)) k = Abs(drd(1) - Grd(3) + Grd(3) + Grd(4) k = Abs(drd(1) - Grd(3) + Grd(3) + Grd(4) k = Abs(drd(1) - Grd(3) + Grd(3) + Grd(4) k = Abs(drd(1) - Gr	
<pre>k1 = kindex(1) - dg Else k1 = Rindex(1) f (Rindex(2) > dg) Then m1 = Rindex(2) - dg Else m1 = Rindex(2) End If if (spintype(dg, Rindex(1)) == spintype(dg, Rindex(2))) Then sc = sc + 1 ! one electron part ! sign* "<"; orb\$(Rindex(1)); " f "; </pre>	
<pre>kl = Rindex(1) kl = Rindex(2) kl = Rindex(2) > dg) Then ml = Rindex(2) - dg ml = Rindex(2) end If If (spintype(dg, Rindex(1)) == spintype(dg, Rindex(2))) Then sc = sc + 1 ! one electron part ! sign* "<"; orb\$(Rindex(1)); " f "; </pre> Cphase = 1 Else cphase = -1 End If Else cphase = -1 If (Rindex(1) > dg) Then K1 = Rindex(1) - dg Else k1 = Rindex(1) If (Rindex(2) > dg) Then k2 = Rindex(2) - dg Else k2 = Rindex(2)	
<pre>End If If (Rindex(2) > dg) Then m1 = Rindex(2) - dg m1 = Rindex(2) m1 = Rindex(2) If (spintype(dg, Rindex(1)) == spintype(dg, Rindex(2))) Then sc = sc + 1 ! one electron part ! sign* "<"; orb\$(Rindex(1)); " f ";</pre> Else cphase = -1 End If If (Rindex(1) > dg) Then k1 = Rindex(1) - dg Else k1 = Rindex(1) If (Rindex(2) > dg) Then k2 = Rindex(2) - dg Else k2 = Rindex(2)	
<pre>If (Rindex(2) > dg) Then If (Rindex(2) - dg If (Rindex(2) - dg If (Rindex(2) End If If (spintype(dg, Rindex(1)) == spintype(dg, Rindex(2))) Then sc = sc + 1 ! one electron part ! sign* "<"; orb\$(Rindex(1)); " f ";</pre> Cplase1 End If If (Rindex(1) > dg) Then Rindex(1) - dg If (Rindex(1) - dg If (Rindex(2)	
<pre>If (Rindex(2) > dg) Then m1 = Rindex(2) - dg Else m1 = Rindex(2) End If (Rindex(2)) If (spintype(dg, Rindex(1)) == spintype(dg, Rindex(2))) Then sc = sc + 1 ! one electron part ! sign* "<"; orb\$(Rindex(1)); " f "; </pre>	
<pre>In = Kindex(2) = dg In (Kindex(1) > dg) Inen Else In = Rindex(2) If (spintype(dg, Rindex(1)) == spintype(dg, Rindex(2))) Then sc = sc + 1 ! one electron part ! sign* "<"; orb\$(Rindex(1)); " f "; In (Rindex(1) - dg Else Rindex(1) - dg Else Rindex(1) - dg Else Rindex(1) - dg Else Rindex(2) - dg Else Rindex(2) - dg Else Rindex(2) - dg Else Rindex(2) - dg Rindex(</pre>	
<pre>hile Rindex(2) End If If (spintype(dg, Rindex(1)) == spintype(dg, Rindex(2))) Then sc = sc + 1 ! one electron part ! sign* "<"; orb\$(Rindex(1)); " f "; k2 = Rindex(2)</pre>	
<pre>Ind If If (spintype(dg, Rindex(1)) == spintype(dg, Rindex(2))) Then sc = sc + 1 ! one electron part ! sign* "<"; orb\$(Rindex(1)); " f ";</pre> In Se It = Rindex(1) End If If (Rindex(2) > dg) Then k2 = Rindex(2) - dg Else k2 = Rindex(2)	
<pre>If (spintype(dg, Rindex(1)) == spintype(dg, Rindex(2))) Then sc = sc + 1 ! one electron part ! sign* "<"; orb\$(Rindex(1)); " f ";</pre> Ind If If (Rindex(2) > dg) Then k2 = Rindex(2) - dg Else k2 = Rindex(2)	
<pre>If (bpinder(1), bpinder(1), bpinder(d), If (Rindex(2) > dg) Then sc = sc + 1 ! one electron part ! sign* "<"; orb\$(Rindex(1)); " f "; If (Rindex(2) > dg) Then k2 = Rindex(2) - dg Else k2 = Rindex(2)</pre>	
Image: Sc + 1 Image: Sc + 1 ! one electron part Else ! sign* "<"; orb\$(Rindex(1)); " f ";	
! one electron part ! sign* "<"; orb\$(Rindex(1)); " f "; Else k2 = Rindex(2)	
! sign* "<"; orb\$(Rindex(1)); " f "; k2 = Rindex(2)	
orb\$(Rindex(2)); ">"; End If	
$Hrow(icfg^*(icfg-1)/2+jcfg) = If (Rindex(3) > dg) Then$	
$Hrow(icfg^{\frac{1}{2}}(icfg^{-1})/2+jcfg) + monoel(k1, m1 = Rindex(3) - dg$	
m1)*cphase Else	
m1 = Rindex(3)	
End If If (spintype(dg, Rindex(1)) == spintype(dg,	
If (Rindex(4) > dg) Then Rindex(4))) Then	
m2 = Rindex(4) - dg If (spintype(dg, Rindex(2)) == spintype(dg,	
Else Rindex(3))) Then	
$mZ = Rindex(4) \qquad \qquad sc = sc + 1$	
End II $! = \operatorname{sign}^* "("; \operatorname{Orb}(\operatorname{Rindex}(1)); ", ";$	
<pre>ii (spintype(ag, Rindex(1)) == spintype(ag, orb\$(Rindex(2)); " g "; orb\$(Rindex(4)); ",";</pre>	
$\operatorname{Rindex}(3)$) Then $\operatorname{To}(\operatorname{Rindex}(3))$; ">"; $\operatorname{Rindex}(3)$; ">";	
$\lim_{x \to a} (A) \bigcup_{x \to a} (A) $	
Rindex (4))) Then $1/(2\pi)CH3 = Diet (K1, K2, M2, M1) * Chase$	
Jeignt "/", orb\$(Pindey(1)), "", End If	
orbs(Rindex(2)), "Idl", orbs(Rindex(3)), ","	
orbs(Rindex(2)), [3], orbs(Rindex(3)), , End Select	
$Hrow(icfa^{-1})/2+icfa) =$	
Hrow(icfa2(icfa-1)/2+icfa3) + end do !icfa	
biel (k1, k2, m1, m2) *cphase end do !icfg	
End If	
End If End Subroutine SlaterRules	

Dr. Fănică Cimpoeşu

Anexă 4. Cod de algebră computerizată exemplificînd implementarea schemei de generalizare a modelării Ligand Field (discutată în secțiunea 3 a raportului de mai sus).

atprim[1] = {{1, 0, 1, 1133 304.9414800, 0.044074875401},

4 holo5gdf3a3_suppmat.nb

atprim[3] = atprim[2]; atprim[4] = atprim[2];

nat = Length[Transpose[coord][[1]]]

Do[{

nprim[iat] = Dimensions[atprim[iat]][[1]]; nao[iat] = Max[Transpose[atprim[iat]][[1]]] }, {iat, 1, nat}]

Do[{

Do[kao[iat][i] = 0, {i, 1, nao[iat]}];

```
Do[[kao[iat] [atprim[iat] [[i, 1]]] = kao[iat] [atprim[iat] [[i, 1]]] + 1,
expao[iat] [atprim[iat] [[i, 1]], kao[iat] [atprim[iat] [[i, 1]]] =
atprim[iat] [[i, 4]], cfao[iat] [atprim[iat] [[i, 1]],
kao[iat] [atprim[iat] [[i, 1]]] = atprim[iat] [[i, 5]],
lao[iat] [atprim[iat] [[i, 1]]] = atprim[iat] [[i, 2]], (i, 1, nprim[iat])];
```

Print[Table[{kao[iat][i], lao[iat][i]}, {i, 1, nao[iat]}]]
}, {iat, 1, nat}]

Table[

kont = 0 Do[{naosat[iat] = 0: Do[{Do[{kont = kont + 1; naosat[iat] = naosat[iat] +1; id[iat][naosat[iat]] = {i, lao[iat][i], l} }, {1, 1, nangf[lao[iat][i]]}] }, {i, 1, nao[iat]}] , Print[naosat[iat]]}, {iat, 1, nat}] naos = kont Table[id[1][i] , {i, 1 naosat[1]}] S1 = Table[Sao[1][[id[1][i][[1]], id[1][j][[1]]]] * If[id[1][i][[2]] == id[1][j][[2]], Saa[id[1][i][[2]]] [[id[1][i][[3]], id[1][j][[3]]]] ,0] , {i, 1, naosat[1]}, {j, 1 naosat[1]}] Clear[aofcts] kont = 0 Do[{ Do[{Do[{kont = kont + 1, aofcts[kont][X_, Y_, Z_] = angf[lao[iat][i]][X - coord[[iat, 1]], Y-coord[[iat, 2]], Z-coord[[iat, 3]]][[1]]*nrm[lao[iat][i]][[1]]* Sum[cfao[iat][i, m1] * RGTO[lao[iat][i] +1, expao[iat][i, m1], Sqrt[(X - coord[[iat, 1]])^2 + (Y - coord[[iat, 2]])^2 + (Z-coord[[iat, 3]])^2]], {m1, 1, kao[iat][i]}] (* , Print[aofcts[kont][x,y,z]] *) }, {l, 1, nangf[lao[iat][i]]}] }, {i, 1, nao[iat]}] }, {iat, 1, nat}] naos = kont $\texttt{Y}[\texttt{l},\texttt{m}, \theta, \varphi] = \texttt{SphericalHarmonicY}[\texttt{l},\texttt{m}, \theta, \varphi];$ $\texttt{Yc}[\texttt{l}_,\texttt{m}_,\texttt{\theta}_,\texttt{\phi}_] = ((-1) \ \texttt{m}) \ \texttt{*} \ \texttt{SphericalHarmonicY}[\texttt{l}, -\texttt{m}, \texttt{\theta}, \texttt{\phi}] \ ;$ $\texttt{CY}[\texttt{l},\texttt{m},\theta,\phi] = \texttt{Sqrt}[\texttt{4Pi}/(\texttt{2l+1})] * \texttt{Y}[\texttt{l},\texttt{m},\theta,\phi];$ $\texttt{CYc[1_, m_, \theta_, \phi_]} = \texttt{Sqrt[4Pi/(2l+1)]} * \texttt{Yc[1, m, \theta, \phi]};$ 1max = 10 klm = 0 Do[{Do[$\{klm = klm + 1,$ fsph[klm][th , ph] = If[m = 0, Sqrt[4 Pi / (2 1 + 1)] * SphericalHarmonicY[1, 0, th, ph], $\label{eq:linear} \texttt{If}[\texttt{m} > \texttt{0}, \texttt{Sqrt}[\texttt{4Pi}/(\texttt{2l}+\texttt{1})] * (\texttt{SphericalHarmonicY}[\texttt{l},\texttt{m},\texttt{th},\texttt{ph}] + \\$ ((-1)^m) * SphericalHarmonicY[1, -m, th, ph]), Sqrt[4 Pi / (2 1 + 1)] * I * (SphericalHarmonicY[1, -m, th, ph] -((-1)^m) * SphericalHarmonicY[1, m, th, ph])] 1 }, {m, -1, 1}]

}, {1, 0, 1max}]
klmax = klm

G For Dr. Fănică Cimpoeşu

ntheta = 24; nphi = 48; kont = 0; eptav = 0; wgt = 0;

Do[{

Print[{itheta, iphi}]; theta = (itheta - 1) * Pi / (ntheta - 1);phi = (iphi - 1) * 2 * Pi / (nphi - 1); Do[rvLF[k] = vrLF[r[k] * Cos[phi] * Sin[theta], r[k] * Sin[phi] * Sin[theta], r[k] * Cos[theta]], {k, 1, nmax1}]; vLF[itheta, iphi] = Sum[rvLF[k] *w[k] *r[k]^2, {k, 1, nmax1}]; }, {itheta, 1, ntheta}, {iphi, 1, nphi}]

map = Table[vLF[itheta, iphi], {itheta, 1, ntheta}, {iphi, 1, nphi}]

ktp = 0 Do[{ (*Print[{itheta,iphi}];*) theta = (itheta - 1) * Pi / (ntheta - 1);phi = (iphi - 1) * 2 * Pi / (nphi - 1); ktp = ktp + 1; Do[A[ktp, klm] = N[fsph[klm][theta, phi]], {klm, 1, klmax}]; B[ktp] = vLF[itheta, iphi]; }, {itheta, 1, ntheta}, {iphi, 1, nphi}] ktpmax = ktp; Amat = Table[A[ktp, klm], {ktp, 1, ktpmax}, {klm, 1, klmax}]; Bmat = Table[B[ktp], {ktp, 1, ktpmax}];

Cmat = Chop[LeastSquares[Amat, Bmat]]

vsph[th_, ph_] = Sum[Cmat[[klm]] * fsph[klm][th, ph], {klm, 1, klmax}];

mapfit =

Table[Chop[vsph[(itheta - 1) * Pi / (ntheta - 1), (iphi - 1) * 2 * Pi / (nphi - 1)]], {itheta, 1, ntheta}, {iphi, 1, nphi}]

Do[{

theta = (itheta - 1) * Pi / (ntheta - 1); phi = (iphi - 1) * 2 * Pi / (nphi - 1); Print[{itheta, iphi, vLF[itheta, iphi], Chop[vsph[theta, phi]]}]; }, {itheta, 1, ntheta}, {iphi, 1, nphi}]

nthetal = 48;

nphi1 = 96; mapfitx = Table[Chop[vsph[(itheta - 1) * Pi / (ntheta1 - 1), (iphi - 1) * 2 * Pi / (nphi1 - 1)]] {itheta, 1, nthetal}, {iphi, 1, nphil}]

mos1 = Table[mos[[i, iLF]], {i, 1, naosat[1]}, {iLF, 1, nLF}] MatrixForm[mos1] renorm = 1 / Sqrt[Diagonal[Transpose[mos1].S1.mos1]]

Table[

moLF1[iLF][X_, Y_, Z_] = renorm[[iLF]] * Sum[mos1[[iaos, iLF]] * aofcts[iaos][X, Y, Z], {iaos, 1, naosat[1]}] , {iLF, 1, nLF}] vrLF1[X_, Y_, Z_] = Sum[emos[[iLF]] * moLF1[iLF][X, Y, Z] * moLF1[iLF][X, Y, Z], {iLF, 1, nLF}];

ntheta = 24; nphi = 48; kont = 0: eptav = 0; wgt = 0;

Do[{

Print[{itheta, iphi}]; theta = (itheta - 1) * Pi / (ntheta - 1); phi = (iphi - 1) * 2 * Pi / (nphi - 1); Do[rvLF1[k] = vrLF1[r[k] * Cos[phi] * Sin[theta], r[k] * Sin[phi] * Sin[theta], r[k] * Cos[theta]], {k, 1, nmax1}]; vLF1[itheta, iphi] = Sum[rvLF1[k] *w[k] *r[k]^2, {k, 1, nmax1}]; }, {itheta, 1, ntheta}, {iphi, 1, nphi}]

map1 = Table[vLF1[itheta, iphi], {itheta, 1, ntheta}, {iphi, 1, nphi}]

ktp = 0 Do[{

(*Print[{itheta,iphi}];*) theta = (itheta - 1) * Pi / (ntheta - 1); phi = (iphi - 1) * 2 * Pi / (nphi - 1); ktp = ktp + 1; Do[A1[ktp, klm] = N[fsph[klm][theta, phi]], {klm, 1, klmax}]; B1[ktp] = vLF1[itheta, iphi]; }, {itheta, 1, ntheta}, {iphi, 1, nphi}] ktpmax = ktp; Amat1 = Table[A1[ktp, klm], {ktp, 1, ktpmax}, {klm, 1, klmax}]; Bmat1 = Table[B1[ktp], {ktp, 1, ktpmax}];

G For

```
Cmat1 = Chop[LeastSquares[Amat1, Bmat1]]
vsph1[th_, ph_] = Sum[Cmat1[[klm]] * fsph[klm][th, ph], {klm, 1, klmax}];
mapfit1 =
 Table[ Chop[vsph1[(itheta - 1) * Pi / (ntheta - 1), (iphi - 1) * 2 * Pi / (nphi - 1)] ],
  {itheta, 1, ntheta}, {iphi, 1, nphi}]
Do[{
  theta = (itheta - 1) * Pi / (ntheta - 1);
  phi = (iphi - 1) * 2 * Pi / (nphi - 1);
  Print[{itheta, iphi, vLF1[itheta, iphi], Chop[vsph1[theta, phi]]}];
 }, {itheta, 1, ntheta}, {iphi, 1, nphi}]
nthetal = 48:
nphi1 = 96;
mapfitx1 = Table[
  Chop[vsph1[(itheta-1) * Pi / (ntheta1-1), (iphi-1) * 2 * Pi / (nphi1-1)]],
  {itheta, 1, nthetal}, {iphi, 1, nphil}]
lLF = (nLF - 1) / 2
klm = 0
Do[{Do[
                                                                                            vsphLF[th_, ph_] = Sum[CmatLF[[klm]] * fsphLF[klm][th, ph], {klm, 1, klLF}];
    \{klm = klm + 1,
    fsphLF[klm][th_, ph_] =
                                                                                            mapfitLF =
     If[m = 0, Sqrt[4 Pi / (2 1 + 1)] * SphericalHarmonicY[1, 0, th, ph],
                                                                                              Table[ Chop[vsphLF[(itheta - 1) * Pi / (ntheta - 1), (iphi - 1) * 2 * Pi / (nphi - 1)] ],
      If[m > 0, Sqrt[4 Pi / (2 l + 1)] * (SphericalHarmonicY[l, m, th, ph] +
                                                                                               {itheta, 1, ntheta}, {iphi, 1, nphi}]
           ((-1)<sup>m</sup>) * SphericalHarmonicY[1, -m, th, ph]),
        Sqrt[4 Pi / (2 l + 1)] * I * (SphericalHarmonicY[l, -m, th, ph] -
                                                                                            Do[{
           ((-1)^m) * SphericalHarmonicY[1, m, th, ph]) ]
                                                                                               theta = (itheta - 1) * Pi / (ntheta - 1);
     1
                                                                                               phi = (iphi - 1) * 2 * Pi / (nphi - 1);
   }, {m, -1, 1}]
                                                                                               Print[{itheta, iphi, vLF[itheta, iphi], Chop[vsphLF[theta, phi]]}];
 }, {1, 0, 2 * 1LF, 2}]
                                                                                              }, {itheta, 1, ntheta}, {iphi, 1, nphi}]
klLF = klm
ktp = 0
                                                                                            ntheta1 = 48;
Do[{
                                                                                            nphi1 = 96;
  (*Print[{itheta,iphi}];*)
                                                                                            mapfitxLF = Table[
  theta = (itheta - 1) * Pi / (ntheta - 1);
                                                                                               Chop[vsphLF[(itheta - 1) * Pi / (nthetal - 1), (iphi - 1) * 2 * Pi / (nphi1 - 1)] ],
  phi = (iphi - 1) * 2 * Pi / (nphi - 1);
                                                                                               {itheta, 1, nthetal}, {iphi, 1, nphil}]
  ktp = ktp + 1;
  Do[ALF[ktp, klm] = N[fsphLF[klm][theta, phi]], {klm, 1, klLF}];
                                                                                            Cmat
  BLF[ktp] = vLF[itheta, iphi];
                                                                                            Cmat1
 }, {itheta, 1, ntheta}, {iphi, 1, nphi}]
                                                                                            CmatLF
ktpLF = ktp;
AmatLF = Table[ALF[ktp, klm], {ktp, 1, ktpLF}, {klm, 1, klLF}];
BmatLF = Table[BLF[ktp], {ktp, 1, ktpLF}];
                                                                                            ListPlot[Cmat, Filling → Axis]
n
                                                                                            ListPlot[Cmat1, Filling → Axis]
                                                                                            ListPlot[CmatLF, Filling → Axis]
CmatLF = Chop[LeastSquares[AmatLF, BmatLF]]
```

W For Dr. Fănică Cimpoeşu