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L Critical verification of the current used basis sets. Testing the
limits of Density Functional Theory (DFT) methods.

I.A. Stating the problems existing with the currently used bases. Testing the spectral
performances of the Gaussian bases for the hydrogen atom.

The computational chemistry' is a distinct branch of modern fundamental science and at
the same time a valuable counterpart of the applied material sciences, providing explanations
and predictions as guidelines for achieving desired properties. The vast majority of quantum
chemical calculations is based on the so-called Gaussian Type Orbitals (GTOs)?> which
represent the "concrete and steel” of the actual development in this field. Alternative options
such as the Slater Type Orbitals (STOs) are rarely used, in spite of the fact that these would
represent rational conceptual choice. In solid state problems, but also applicable (in certain
circumstances) at molecular level, the Plane Wave (PW) are often employed.

We will launch here a caveat about drastic problems and hidden limitations in the use of
Gaussian basis sets. An important test of basis sets is given by the case of hydrogen atom, for
which correct analytical solutions are known. Confined to the non-relativistic Schrodinger
equation, the orbital eigenvectors are done by the Laguerre polynomials, which can be
described as combinations of r*-exp(-Z-r/n) components, with k running from 0 to n-1, for a
given n main quantum number (Z being the general nuclear charge of the one-electron atom).
The eigenvalues are, simply, E, = -Z/(2n%), irrespective the / = 0, .... n-1 secondary quantum
numbers subsequent to a given n index.

From this brief description one may foresee the engineering approach to the
wavefunction problem of the hydrogen atom. Namely, even without knowing about Laguerre
functions, just having a hint, a guess, that the r-exp(-£-r) primitives are close to the aimed
solutions, then such functions can be set as a basis for the matrix representation of the
corresponding Hamiltonian. The * factors, with k>0, are playing essential role in determining
the long-range shape of the radial atomic orbitals, namely the positions of nodes and extrema
at relatively large n quantum numbers. It is well known that the widespread use of GTOs
instead of STOs implies a compromise but is tacitly believed that the most affecting part is the
use of cxp(-Q-rz) exponentials instead of the exp(--r) ones. However, the hidden drawback is
that, addressing a shell with the / quantum number, the GTOs are implying a unique ' cofactor,
instead of a 7* series, e.g. ranging from k=0 to k=n-I-1, if get inspiration from the expansion of
Laguerre polynomials in STO primitives. Then, for instance the s-type GTOs consist only in
linear combination of pure exponentials, without any r* cofactor. This impinges upon the radial
profiles and computed orbital energies. Since the problem at hand is specific, to avoid the use
of the full engine of one the existing electronic structure code, we produced our own code for
the GTO-based Hamiltonian representation of the hydrogen atom, outlined in the Table 1.1.
There is a large variety of used GTOs (e.g. Pople-type bases,” Ahlrichs sets,* correlation
consistent cc-pvnz,’ Atomic Natural Orbitals ANO bases,® Effective Core Potential ECP
series,’), however most of them faulted even in the H case.
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Table I.1. The Matlab-Octave code for the calculation of H atom with general GTO bases (taken from

a input file).

function [leiq, e, c]=readgtol|filename)

% e.g. filename="h-cc-pviz.gto'
fid=fopen({filename, 'r'); titlel=fgetl{fid);
linegto=fgetl|fid);
endtest=length{findstr (linegte, "'*')};
nfet=0; nprim=0; while endtest==
nfet=nfet+1;

aaa=sscanf (linegto, '%s %i %g ',3):

if char(aaa(l))=='8"' | char(aaa(l))=="s'
1shell=0;

elseif char(aaa(l))=="P' | char{aaa(l))=="p'
1shell=1;

elseif char(aaa(l))=='D' | char(aaa(l))=="4d"
lshell=2;

elseif char(aaa(l))=="'F' | char{aaa(l))=="£f"
1shell=3;

elseif char(aaa(l))=="'G' | char{aaal(l))=="g"
lshell=4;

elseif char(aaa(l))=="H' | char{aaa(l))=="h"
1shell=5;

elseif char(aaa{l))=="1' | char{gaa({l))=="1"
lshell=&;

elseif char(aaa(l))=="K' | char{aaal(l))=="k"
1shell=7;

else
1shell=-1;

end

ngto=aaa(2);
1fct (nfect)=1shell;
for i=l:ngto
ac=facanf (fid, "¢qg %9 ',2);
aexpi{i)=ac({l);
cexpli)=ac(2);
nprim=nprim+1;
bas (nprim,1)=1shell+1;
bas(nprim, 2)=1shell; bas(nprim,3)=ac{l);
cgto{nprim, nfct)=ac{2);
end
linegto=fgetl{fid);
endtest=length({findstr (linegto, '*'));
end
teig({hmat, smat)
[0, e0]=eig{hmat, smat) ;
snl=diag(power (diag(c0'*smat*c0),-1/2));
cl=cO*snl;
[el,iord]=sort{diag{el));
c2=&1(:,iord)

rmin=0;
rmax=10;
dr=0.05;
r=rmin:dr:rmax;

for k=1:1length(r)
for i=l:nprim
rbas{i, k)=rgto(bas{i,1l),bas(i,3),r(k)};
end: end
tbasl=cgto'*rbas;
end

ca=smat”® (1/2)*c2;
leiga=diag{ca'*diag(lfct)*ca);
ea=el;

[leiga, ea]

e=g';

[leig,e]

reigl=c3'*rbasl;

plot(tr,reigl)

c=smat” {1/2)*c3;
leig=diag(c'*diag{lfct)*c);

reig=c2'*rbasl;

kont=0;
for i=l:nfct
sg=1;
if max(abs{reigi(i,:)) )==max{-(reig(i,:)))
sg=-1;
end
G2, Ly=agte2 i)

if el(i)<=0
kont=kont+1;

el kont)i=c2{:,1)¢
e{kont)=el(i);

end

%disp(bas)

Z=1;

ngto=inline('sqrt{ (2" (3/2+n)*a”(1/2+n))/ga
mma {1/2+n)) ", 'n', 'a');
rgto=inline('sgrt( (2" (3/2+n)*a” (1/2+n))/ga
mma (1/2+n) ) *power (r,n-1)*exp (-
a'*ri\z}l,lnl,lal,lrl);

for i=l:nprim

for j=l:inprim
nl=bas(i,1);1ll=bas (i, 2);al=bas{i, 3);
nZ=bas{y,1);12=bas{j, 2);a2=bas {3, 3);
if 11==12 ; 1=11;

s=(gamma{ (1/2)* (nl+n2+1) )/ {al+aZ) " { (1/2)* |
nl+n2+1) ) )*sgrt({{(2*al) " (nl+1/2)*(2*a2)" (n
2+1/2))/ (gamma (nl+1/2) *gamma (n2+1/2) ) ) ;
h={{a272* (1+1°2+nl-nl"2)+al*a2* (-
1+2*1+2*%1°24nl+n2+2*nl*n2)+al"2* {(1+1°2+n2—
n2"2) ) *gamma { (1/2)* (-1+nl+n2) ) -

2* (alt+a2)” (3/2) *E*gamma { (nl+n2)/2))*
{1/{2*(al+a2)* ({1/2) *(nl+n2+3) ) ) ) *sqrt{{(2
*al)~ (nl+1l/2)* (2%a2) " (n2+1/2) )/ (gamma (nl+1
/2y *gamma (n2+1/2)) ) ;

else

h=0;s=0;

end

hmatO{i, j)=h;
smat0(i, j)=s;
end

end
hmat=cgto'*hmatO*cgto;
smat=cgto'*smatO*cgto;

The Table I.A1 from appendix shows the results obtained from the assessment of an
extended, almost exhaustive, series of current basis sets. A rigorous treatment would give only
negative energies, -1/(2n%). The positive values represent leftovers of the applied technique.
All the existing basis sets are approximating reasonably or well the -0.5 a.u. energy for Is. The
vast majority fails in giving negative energy even for 2s level. The highly rated cc-pVnZ
(n=D,T.,Q, 5, 6) bases give negative energy for 2s, but with bad absolute value. An isolated
surprise is the Sadlej+ basis, accounting the sign and approximate values up to n=6. This
prompts for the future aimed reconsideration of the bases and computing codes.



L.B. Verifying the performances of existing bases and the DFT limits for the d and f metal
ions. Correlations with Slater-Condon parameters.

Plane Wave methods as source for radial profiles of atomic orbitals. After starting with
the simplest atom, the hydrogen, we go now for heavier elements, testing the other extreme of
periodic table. Thus, we devoted our attention to methodological issues related to the study of
electronic structure of lanthanide ions and complexes, particularly using plane-wave-based
methods. Despite the apparent simplicity, the atomic calculations of lanthanides show several
aspects under debate.®” Specifically, will consider atoms with the 6s*5d'4f" electronic
configuration. Within the considered projected-augmented wave (PAW) computational
method, with VASP code,' the configuration of lanthanide atoms is [Xe]5s25p>6s25d'4f",
namely with the electrons of [Xe] core replaced by the effective potentials.
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Figure L.1. Orbital levels of selected lanthanide atoms, Pr, Gd and Tb, computed by DFT (PBE functional)
within Gamma-zero option, with VASP code, under specific control of non-aufbau configuration.

We will consider the spin polarization only for the f shell, while the electrons in 4s and
5d are paired in their shells. In order to keep the spherical nature of the atom, fractional
occupations are considered for the incomplete degenerate orbital sets. Namely, for the {" shell,
each atomic orbital (AQ) should have a n/7 occupation. For the elements in the first half of the
lanthanide series (n<7) there are n/7 o electrons and empty P subsystem. For instance, the
Pr(II) ion has the f> configuration, corresponding to 2/7~ 0.285714 population of cach f a.-
type AO. At the middle of the series, the Gd(II1) has an integer occupation of AOs, with n=7
and the half-filled t"* shell. After the middle of the series, the t’* configuration is kept, the
fractional occupation going into the B part. For instance, the Th(III) ion, with the fS=f7of'
configuration has 1/7~0.142857 electrons in each B-type f orbital. In all cases, the outer 5d
shell is considered using fractional occupations, spinless, with 0.50.4+0.53 configuration, e.g.
the d! electron being smeared as 0.50. and 0.5B fractional occupations of each component of
the unrestricted d-type shell.

In the figure 1.1 we selected several cases, such as the Pr, Gd and Tb atoms. Practically,
all the systems are non-aufbau, since the upper 5s and 4d orbitals are occupied, above the partly
filled or empty f shell components. For the Pr atom, this occurs in both o and [ subsystems
(considering the partly filled f2* and the empty f*). At half-occupation (i.e. Gd), or after it (Tb-
YD), the non-aufbau configuration occurs for the 3 electrons. We managed the non-aufbau
calculations with the help of occupation keywords (FERWE and FERDO in VASP). We



checked that the non-aufbau sequences, e.g. {1,3,0,1,0.5} for the B-{5s,5p,4f,6s,5d} on Pr(1II)
or Gd(II) are lower in energy than the aufbau series reordering {5s,5p, 6s,5d 4f}, avoiding
pushing the empty B-f shell above the occupied AOs. Since in the lanthanide systems the basic
optical and magnetic properties, also interesting for application purposes, are due to atomic-
like features it is worth focusing on the detailed study of the f atomic orbitals.
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Figure L.2. Radial profile of the spin difference density, accounting for 2 electrons in the Pr example, 7
electrons for Gd and 6 electrons for the Tb case (proportional to the area under curves). The results from VASP
atomic calculation are shown by circles and the continuous line corresponding to the fit with a combination of
three Slater-Type Orbitals (STOs), represented by dashed lines.

An interesting result, extracted from the above calculation, is the radial profile of the
spherical section in the volume occupied by the f electrons (see Figure [.2). It is obtained from
the maps of o minus B electron densities, representative completely for the f shell. The radial
profile from plane-wave calculations allows us to fit the 4f node-less AO as combination of
Slater-type orbitals (STOs) and, from here, to estimate the Slater-Condon two-electron
parameters, which will provide the Coulomb (U) and exchange (/) parameters to be employed
in a DFT+U scheme. Thus, with the following functions:

Ro(n.&,r)= Ngo(n,8) - gyt exp(— G !‘), Nyro(n,8) = %
V! (L1)

the atomic orbitals are obtained as linear combinations of STOs:

N
R,,(r)= ZGERS?'O (n,&,r)
i=l (L2)
Taking for the 4f shell three components with n=4, for the selected atoms, the resulted
parameters are presented in Table 1.2.

Table 1.2. Parameters of the f atomic shell subsequently obtained to the plane —wave calculation of
selected lanthanide atoms. The coefficients (a;) and exponents (&) of the three STO primitives fitting
the radial pattern and the resulted Slater-Condon electron-electron parameters (F).

Pr Gd Tb
aj 0.16784 0.10800 0.13298
az 0.84917 0.80185 0.74674
as 0.20868 0.19800 0.24380
& 11.396 11.514 11.464
& 4.043 4.080 4.065
& 1.465 2.546 2.642
Foem™) 170997.17 171793.78 170254.73
Fr(em™) 368.15 393.86 383.14
Fy(em™) 48.35 52.79 51.04
Fg(em™) 5.18 5.70 5.50




The 4f shell treated by a rexp(-£7) single exponential leads to the following analytic
Slater-Condon parameters:
26333 459 697 697
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The relative ratio of the parameters, in the order of increasing subscript is 26580.8:
66.2:9.1:1. For multi-exponential AOs, the expressions are becoming more complex, but yet
tractable. Then, with the fitted radial parameters, the Slater-Condon quantities can be obtained.
The calculated values are reasonably close to the experimental ones, particularly considering
that the traditional Gaussian-based methods are leading to systematic overestimations of the F
parameters. The spectral experiments do not enable the Fy parameter (which determines a
common shift of all the spectral terms). For the F2, F4, Fs series on Pr(III) the experiment yield
the 316.7, 58.7, 5.5 respective values, all in cm™."" This compares well with the estimated
368.15, 48.35, 5.18 amounts (in cm™'). As mentioned, the gaussian based multiconfiguration
methods are overestimating the leading /> parameter, having for instance, for Pr(1lI), the 439.9,
56.5, 6.0 (cm™) values with the effective core-type SBKIC basis and 431.8, 55.7, 5.9 (cm™)
with the all-clectrons SARC basis.

Non-standard calculations for Ligand-Field and exchange interactions by CAS and DFT
methods d-f systems.

In the following we will assess properties tuned by the basis set quality, namely the
Ligand Field (LF) and exchange coupled parameters.!> We considered the problem of d-f
exchange coupling in the binuclear Cu-Gd system,!® treated by Broken Symmetry (BS)!*!*
approach. For a Cu-Gd complex the BS method consists in two unrestricted calculations with
SA{HS) =7/2+1/2=4 and SABS)=7/2-1/2=3 projections for the so-called High Spin (HS) and
Broken Symmetry states (BS). The calculations were done with GAMESS code!® using the
SBKIC effective core potentials and basis sets for Gd while 6-311G* for the Cuand 6-31G for
the C or H atoms. The molecular structure is taken for the experimental Cu-Tb system,!”
assuming the same skeleton for the Cu-Gd. The Density Functional Theory (DFT)
calculations'® were performed, mainly with B3LYP functional.

We consider two calculations whose spin populations on the Cu and Gd sites reflect the
spin switching, the exchange coupling constant is obtained by extracting the energy, E, and
spin square expectation value, (S?) from unrestricted DFT calculations, using the Yamaguchi-
Onishi formula'®:

Eps= Eys

J=————

(SQ)HS_ (5 )ps - (4

The exchange parameter estimated with B3LYP functional, Jeyge=+1.85 cm! is in
agreement to the experimental one,* Jouge=+2.1 cm (in the formalism ascribing the exchange
Hamiltonian as H = —2J §, - S, ). The Mulliken spin populations from Table 1.2 show that
the computation is in agreement with the idea of BS treatment, having values close to the
{Gd(7e)),Cu(a) } vs. {Gd(7a),Cu(p)} configurations for HS vs BS states. This situation is also
well illustrated in Figure 1.3 plotting the spin density. One observes that the density maps are
similar in absolute contour, but that the BS has opposite spin around the Cu atom. A part of the
spin density in the d-type coordination sphere is delocalized over the surrounding atoms. The
density on the f centre is almost perfectly spherical, compatible with the symmetry of the half-
filled shell.



Table 1.3. Details of the BS-DFT calculations on the Cu-Gd system with B3L YP functional

Energy 2 Mulliken Spin Populations
State (atomic units) <S )
Gd Cu
HS{Gd(70).Cu()}  -4440.30370943 20.013 7.030 +0.727
BS:{Gd(7a).Cu(P)}  -4440.30365016 13.013 7.028 -0.725

Figure 1.3. Spin density maps for the B3LYP calculations on the Cu-Gd complex: (a) the HS case, (b) the BS
case. The surface is drawn at 0.001e/A3, with o spin density in blue and B spin density in yellow.

In order to confirm the relationship of the obtained results against the basis set factors,
we embraced the plane-waves paradigm, where is possible to mimic the case of infinite basis.
Here we used the VASP code, sampling the k-space with only Gamma point, considering that
the molecular aspects are in focus, not the band structure pattern.

If the cluster is placed in a box of size 30 A, a first-set of calculations performed failed
to converge. The box size appears to be too large and the computational cost is prohibitive.
Therefore, we decided to reduce the box size to 20 A, and once properly checked, the
convergence, we re-run the calculations in a larger cell (a 25 A-size cubic cell) in order to
evaluate size-effects. Potentials used (POTCAR) are PBE type. For Gd-potential semicore s-
and p-states are included as valence states: Gd potential has 18 valence electron in the
electronic configuration (5s*p°)(4£7)(6s% 5d%), and Cu potential has 11 valence electrons, in the
configuration (3d'%) (4s!). To treat the electronic correlation for Gd and Cu atoms, as standard
procedure in DFT, we used GGA+U approach in the Dudarev formalism.?® Specifically, we
included the following values for Hubbard-like correlation parameter U: Ugd-+=6 eV, Ucy.s=6
eV. The energy cutoff for the plane-wave basis set was fixed to 400 eV, and the Gamma point
was considered for the integration in the Brillouin zone.

The calculations are performed first for the paramagnetic (non-spin polarized) state of
the binuclear CuGd-cluster, then the converged charge density and wavefunctions used to
achieve convergence of the two spin-polarized magnetic states (HS and BS), with proper
initialization of atomic magnetic moments for Gd and Cu atoms, and constrained the total
magnetic moments to the expected values, namely 8 g for HS state and 6 ugs for BS state.
Unfortunately, the plane-wave environment does not provide expectation value of the spin
square operator, confiming then to an Ising-type formula in the analysis of BS results:

J( - EHS — EH.S‘ . (IS)
48,8,

In our case the denominator equals 4x(1/2) x(7/2)=7. Taking, comparatively, the
denominator from previous Yamaguchi-type formula one observes that is exactly 7, ensuring
us that Ising type estimation is valid too. The above described calculations yields thena J=2.65
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cm-1 coupling constant, relatively close to the Gaussian-type DFT calculation and to
experimental values. We then evaluated the effect of size of the simulation cell on the Cu-Gd
magnetic exchange coupling, by performing the same set of calculations for a cluster in a box
of size 25 A (see Table 1.4a)

Table I.4a. The tuning of the molecular box in PW-B S-DFT calculations.

Box-size (A) 20 25
AEps.ug (I‘IICV) 2.30 2.29
J(cm™) 2.65 2.64

We find a small reduction of the magnetic exchange (~0.4%) by increasing the box-size.
This seems a negligible difference and we continue to work with the 20 A-box model. We then
evaluate the convergence of the AEgs.s with respect to energy cutoff of the plane-wave basis
set used. We checked for three cut-off values: 350, 400 and 450 eV (Table 1.4b).

Table 1.4b. The effect of tuning the tuning the cut-off parameter in PW-B S-DFT calculations.

En-Cutoff (eV) 350 400 450
ABps.z1s (meV) 2.32 2.30 230
J (cm™) 2.67 2.65 2.65

The convergence is achieved for the cut-off value used for all the calculations (400 eV).
This value can be taken as basis-set free evaluation of the exchange coupling. We now evaluate
the effect of U-correlation parameter on the magnetic exchange and calculate AEgsus (meV) .
us for the cases: GGA (no-correlation included), Ucy-, Ugd-£, and compare with the previous
calculation (Ucud and Uad.f), as seen in Table I.4c.

Table I.4c. The effect of tuning the tuning the Coulomb-Correlation parameter in DF T-+U
calculations.

U-correlation GGA Ucu.s=6eV Uga.s=6eV Ucud =Ucu.&6eV
AEgs.ns (meV) 0.74 1.23 3.29 2.30
J(cm") 0.85 1.42 3.79 2.65

Here the total magnetic moments are unchanged for the HS and BS magnetic states, 8
and 6 ugrespectively. The magnetic ground state is given by ferromagnetic coupling for Cu-
Gd for all U-cases considered, and we notice that inclusion of correlation of Cu- and Gd-sites
has counteracting effects: while increased correlation of Gd-site clearly favors ferromagnetism
(AE goes from 0.74 to 3.29 meV), the inclusion of U on Cu-site favors the AF-exchange
pathway (AE reduces to 2.30 meV).

We will explore in the following the limits of the DFT approach, attempting to produce
different components originating from the Ligand Field (LF)* splitting of the 'F multiplet,
using the leverage of initial orbital permutation. Namely, taking the natural orbitals generated
by the Cu-Gd calculations (i.e. post-computationally handled fiinctions having occupations
restricted pattern, with occupation number close to 1), we prepare the initialization of the input
in several way, running the orbital where the B electron of the f# configuration of Tb(III) will
be placed. In this manner, we investigate the possibility to mimic the multiplet nature, if the
states with different starting orbitals converge to different solutions. The fact that we obtain
different configurations in the different SCF processes is illustrated as in figure 1.4, taking the
difference density maps with respect of the Cu-Gd reference. We take this global manner of
characterization since the f-type B electron is smeared among several MOs and there is no
simple orbital way of graphical characterisation.



Figure 1.4. Density difference maps obtained subtracting total den-sity of the Cu-Gd system from the
corresponding series of different orbital configurations of the Cu-Tb congener. The shape of the surfaces (contours
with six or eight lobes) suggest the accommodation in f-type MOs for the B electron, when compare the £ and
systems.

Table 1.5. DFT emulation of the the levels associated with the Ligand Field split and the "F term of
the Tb(III) site, by initiating DFT calculation with permuted MOs. Comparatively, CAS data are
shown.

DFT CAS

ABys AEps J AFys AEgs J

(em™) (em™) (em™) (em?) (em?) ( em'h)
1 0.0 9.5 1.59 0.0 5.3 0.76
2 170.6 180.4 1.62 11.7 16.7 0.72
3 228.5 238.2 1.61 211.0 216.1 0.73
4 259.4 270.4 1.84 272.5 277.5 0.72
) 363.1 373.3 1.70 597.7 602.6 0.70
6 1517.9 1531.1 2:21 626.3 6322 0.85
7 2363.9 2375.1 1.87 813.8 819.6 0.83

For each of the seven configurations taken as swrogates the F term levels, we considered
the HS and BS calculation tuned by the spin polarization of the copper centre. The energies of
the configurations (see Table 1.5) in a given spin state (HS or BS) series, are a measure of LF
splitting of the f shell on the Tb site. The gap between HS and BS energies at a fixed
configuration yields the exchange coupling constant. It is interesting to see that the magnitude
of the coupling results almost the same on all the seven LF-type states. The LF total or
successive gaps are over-estimated in comparison to the expected range (a total split of several
hundreds of em™ units). Probably the cause is the fact that, in unrestricted frame, separation of
oo and B orbital energies is not in line with the LF modelling paradigm. In turn, the CAS
(Complete Active Space) methods are retrieving well the LF range.



I1. Reconstructing the basis sets. New bases, at conceptual and technical
levels.

I1.A. Conceiving and writing the algorithms for the treatment of many-electrons atom
in the wave-function and density functional theories. (Obj. D.2.1.1 and D.2.1.2)

To approach the audacious aims of the project, must conceive our own codes, since the
envisaged improvements are beyond the offer of the existing programs for atoms and
molecules. In order to reach the full generality in the frame of wave-function theory, the
procedure must be equivalent with state-averaged complete active spaces (CAS) with arbitrary
occupations of atomic shells. In the case of the atom, the state averaging ensures objects with
spherical symmetry. The procedure can be converted in Fock-alike self-consistent field (SCF)
orbital optimization admitting general occupations, p;,, over the whole set of shells, / denoting

the quantum number and i counting the repetition of the given shell type:
1
E =Y iphy + X2 {'Pt,-(Pr,i — 1), + ex[pi, P ou iy ]} +

Yisn Zl,-:irf, {Plfpn,-, ( Lilyy — ]1,1:,,) - 20’1,0'1:1., ']1,-1:,-,} . (IL.1)

The hy, elements are the orbital one-electron energies (kinetic and electron-nuclear parts),
the Fl?li and F!?lri; are the respective intra- and inter-shell Coulomb integrals, while the J;;, and
Ji;1,;, are the corresponding averaged exchange integrals. For a [* sub-configuration, having
n = py, electrons in the /; shell, more exactly with nq spin-up and ng spin-down particles, the
0;.= (no.-np)/2 denotes the net spin of the shell. The shell-distributed spin quantities are summed
to the total spin of the atom S = ), ¥'; 7;..

A key ingredient in the atomic total energy is the exchange inside a given shell denoted
by ex in the previous expression. By induction on a series of particular cases, we arrived at the
following equation:

21.+1
ex[ll }U;O'Ju] = 2142

o+ ) -p-(Co-D+ ) (112)

8(1+1)
In the particular class of situations, but yet a sufficiently large frame, when all the partial
spins on the shells have the same polarization, the exchange part turns into:

ex[lLp,o.Jul = [(21+3)p — 2(41 + 3)Jy —H—HO' (c+1DJy . (IL3)

The Jir are the average values of the exchange integrals over all the orbital couples within
a given shell. For the respective s, p, d and f cases, these quantities are:

Ba+ﬂ

Jis=0 (IL4.2)
Jon =gy = BEPP (IL4.b)
Jaa = iFdd g Fdd = (ded + S 5 (I.4.c)
Jrr =—=FF +5Fer +——Ff = 105" +33F/ + 286F)7 | (IL4.d)

as function of Slater-Condon radial parameters. [22] There are two conventions for Slater-
Condon parameters, with the k rank indices annotated as superscripts or subscripts, mutually
converted by specific factors. In the case of the above intra-shell parameters the FF vs. F!
relationships are understood from the outlined (11.4.a)-(I1.4.c) formulas. The Table IL.1 shows
the formulas for the inter-shell exchange integrals. The diagonal contains the same type of
shells, but different functions.



Table I1.1. Generic formulas for inter-shell averaged exchange integrals.
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The Coulomb and exchange integrals are decomposed in four-orbital two-electron

integrals over the primitive elements of the given basis. We realized an extensive work,
programming the corresponding formulas for both Slater-type Orbitals (STO) and Gaussian-
type Orbitals (GTO). A general two-electron integral (either in STO or GTO bases) is:
R (alas ol elosale) = J1og [ oo Rt (1) B () Regiy (12) R (72) —oindras2)
The G?;:ala,“blb type integrals (see Table II.1) result from the above formula in the n,l, =
n.l. and nyl, = n4l, case. In the n,l, = n.l. = nyul, = nyl, situation, one achieve the
Fffﬂlﬂ_nﬂlﬂ integrals. The F* and G* -type integrals for the eigenvectors are expanded in the
general R* integrals over the basis primitives.

To the best of our knowledge, a closed formula for the atomic energy of atomic body, as
function of general shell occupation numbers, is not presented in the specialized literature,
particularly in the concern of the intra-shell exchange terms fulfilling the meaning of state-
averaged CAS. The above considerations are valid for the wave-function theory (WFT)
approach of the atomic bodies.

In order to switch to the density functional theory (DFT) must adapt the exchange terms
with elements representing the exchange-correlation functionals:

E=X2iph,+ %Zur Yo APy 1y — W Ue)) Yy + Dy, ~Jin,} (1L6.2)

where

]njlj,n}:lj — L-:o anlf(r) anlj (r)vxc (pa( T), pﬁ( T')) T'sz',

rérfdrdr,. (IL5)

max(ry,ry)ktt

(IL6.b)

while p, and pp are the spin-up and spin-down densities. We confined ourselves to the simplest

functional, Local Density Approximation (LDA). While in the WFT version all the integrals
are done analytically, the J terms in the DFT version are integrated by numeric quadrature.
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IL.B. Optimizing new Gaussian-type basis sets for the series of first light atoms. (Obj.
D.2.1.2)

As pointed previously, the nowadays quantum chemical is heavily based based on the
so-called Gaussian Type Orbitals (GTOs).”?* The radial form of an atomic GTO primitive, as
function of radius r (i.e. the departure of the electron from the nucleus), depends on the
parameter inside the exponential (£) and a certain factor as a power of radius, 7!, ascribed as:

2k+1+ 1/2
Raro(k,{,1) = (?)T_)) L exp(—§ 77 aL7)

2
where I is the incomplete Gamma function.”> There is a rich varicty of GTOs, all undergoing
a hidden drawback. The problem with the GTOs does not stay only in the exp(-£r?) part, as the
quasi-totality of users (and even developers) seem to believe, but in a wrong design of the
polynomial cofactors. Namely, for all the Gaussian basis sets in use the k factor in the above
formula is strictly limited to the /+1 value with respect to the [/ quantum number specific to a
shell (/=0, 1, 2 ... for respective s, p, d etc). In the previous stage we discussed in detail this
aspect for the hydrogen atom. Now will advance toward the first elements of the periodic table.
We propose a well-proportionated scheme taking m elements of 7*"'-exp(-{?) form for each k
subset belonging to a [ shell, with k& in the /+1:n range, confining the » value to the maximal
level for which the good description of the spectrum is desired.

Table I1.2. The fit of the GTO R (k,, 1) functions for second row of the periodic table. The first
column contains the definition of pre-exponential factors, the content of the table consisting in the
exponential parameters (in Bohr?).

k Li Be B C N 0 F Ne
8 1] 0.00221 0.01371  0.00401 0.07071 0.00540 0.00629 0.00727 0.00991
1 0.24895 1.07233  0.58312 3.94029 0.87066 1.07033 1.29241 1.66180
1]28.10699 83.85794 B84.71342 219.57834 140.28768 182.13684 229.78998 278.75371
21 000287 0.00534 0.00865 0.02728 0.00634 0.00735 0.00833 0.00907
2| 0.14176  0.33489 0.43243 1.27506 0.47877 0.58858 0.70496 0.81221
2|1 7.00890 21.00679 21.60758 59.60180  36.14519  47.13183  59.65897  72.72299
31 0.00353 0.00220 0.00503 0.00891 0.00733 0.00852 0.00961 0.01008
3| 0.08887 0.12259  0.18738 0.44144 0.29270 0.36066 0.43139 0.48842
3] 223826 6.81691 698521 2188176  11.68365 15.27249  19.36171 23.67305
P 21 000764 001525 0.01749 0.00941 0.00780 0.00859 0.02872 0.02639
2| 005404 032359  0.44032 1.06329 0.29523 0.34774 0.78835 0.84922
21 038239 6.86518 11.08270 120.17749  11.17023 14.08015  21.63916  27.33244
31 000921 0.00843 0.00836 0.01140 0.00549 0.00604 0.00560 0.00766
31 006526 0.14110 0.18189 0.42871 0.13807 0.16239 0.21428 0.26619
31 046268 236271 395736  16.12051 3.47500 4.36262 8.19443 9.24446
4| 000352 0.00371 0.00390 0.00518 0.00611 0.00673 0.00656 0.00956
4| 0.04357 0.06433  0.08315 0.16886 0.09101 0.10611 0.15800 0.19305
4| 0.53982 1.11514  1.77409 5.50665 1.35551 1.67188 3.80271 3.89907

d 31 0.00872  0.00897  0.00909 0.00903 0.00894 0.00888 0.00883 0.00880
0.02464  0.02586  0.02646 0.02614 0.02573 0.02540 0.02517 0.02501
0.06964  0.07454  0.07701 0.07569 0.07400 0.07267 0.07174 0.07109
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Figure IL.1. The r-R(r) profiles for the Ne atom, with GTOs, in the LDA method. Dashed lines: the results from

the 6-31+G* standard basis. Continuous lines: new basis (see Table I11.2).

We chose to optimize the exponents of the Li-Ne series in the DFT frame, taking the
LDA functional and restricted spinless scheme. For the s-type orbitals we convened to use three
primitives with k=1, three ones with k=2 and three with k=3, targeting the fit of the Is-4s
orbitals (i.e. two virtuals). For the p shell we considered three primitives for k=2, three for k=3,
and also three elements for k=4, fitting the 2p-4p shells. The 3d shell was treated by three GTOs
with k=3. The results are presented in the Table I1.2. The Figure II.1 compares the new basis
with a consecrated one, 6-31+G*, taking the Ne atom. One observes that, while the occupied
atomic orbitals (1s,2s,2p), are similar in both treatments, the new basis enables radially more
expanded virtuals, as proven correct in the previous stage of the project.

I1.C. Optimizing new Slater-type basis sets for the series of first light atoms. (Obj. D.2.1.3)
Relationships with numeric basis sets. (Obj. D.2.1.5)

Alternative option for atomic basis sets are represented by the Slater Type Orbitals
(STOs) [*],
1/2

2k+1

Rsro(k,r) = (B5—) -k teexp(=¢or), (L8

These are rarely used, [2’] although these would represent a rational choice, suggested by
the known exact solution for the hydrogen atom. Using a similar pattern of the radial factors
similar to the above discussed GTO sets, we optimized the STOs for the same series of light
atoms. The fit was realized to numeric orbitals produced by solving the DFT mean-field as a
differential equation, following a methodology due to C. Daul, inspired from the making of
effective potentials for plane-wave codes.”® The numeric points are established by an
exponential template, denser at origin and sparse at large distances:

exp(kh)—1
m 4 (119)

where £ is an asymmetry parameter and & is the first gap, from the =0 point. The maximal
number of points placed below a rmax radial limit is:

Minax = t[In (1 T %)] , (IL10)
0

where the square brackets containing the right-side member denote the integer of the comprised

value. The differential equations are formulated as an eigenvalue problem, with the Py = riR(ry)

amplitudes as radial functions on the r¢ poles. As function of Coulomb (C) and exchange-

correlation (xc) potentials, the equations are organized as a tri-diagonal matrix:

T, = 0y
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——+ Vcl[p(r)] +

( -1 1 Z  11(+1)
Crsr=Th-0)Cr=T—1) ' Clepr=T) k=1k-1) T 2 13

-1

Veelp ()], (?‘k+1—1‘k—1)(?‘k+1—?‘k)) * (Pe=1,Pys Pear)" = EiPp . (IL11)

The non-diagonal elements perform the numeric estimation of the second derivative
implied by the kinetic energy. The resulted numeric R(r) profiles were fitted with STO
primitives, optimizing the mixing coefficients and the { exponents. The results are presented
in Table 11.3.

Table IL.3. The fit of the STO Rgpq(k,{, 1) functions for second row of the periodic table. The first
column contains the definition of pre-exponential factors, the content of the table consisting in the {
exponential parameters (in Bohr!).

k Li Be B C N 0 F Ne
8 1] 0.09247 0.01757 0.18381 0.00142 0.04903 0.17461 0.17903 0.18328
1| 057217 0.19232 0.95161 0.17892 1.21377 1.57709 L.77752 1.97487
1| 354033 210483 492668 2247745  30.04607  14.24447  17.64808  21.27933
21 004092  0.02020 0.02943 0.01445 0.00398 0.00698 0.00645 0.00608
2| 032886  0.20219  0.92925 0.44556 0.24988 0.27554 0.29034 0.30544
21 264295  2.02414 2934064  13.73827  15.69802  10.87256  13.06884  15.34886
31 008605 0.02430 0.05428 0.00834 0.00965 0.01471 0.01376 0.01304
31 039638  0.24507  0.52379 0.26595 0.30001 0.34438 0.36179 0.37880
3 1.82589 247149  5.05437 8.48351 9.33021 8.06016 951219  11.00226

0.02142  0.01604 0.01122 0.21174 0.00196 0.01791 0.03108 0.36664
0.11627  0.14593  0.88038 1.04239 1.30552 1.72735 0.36959 1.52949
0.63100  1.32742 69.05852 5.13163 870.45106 166.59155 4.39468 6.38044
0.02690  0.01803  0.02421 0.01224 0.02483 0.02513 0.03059 0.06472
0.54397  0.77470  0.40438 0.25999 0.48322 0.51546 0.29616 0.56845
10.99940 33.29156  6.75468 5.52122 9.40591 10.57383 2.86759 4.99317
0.03241  0.02094  0.01882 0.02247 0.01700 0.03209 0.06219 0.02485
0.37985  0.45269 0.25752 0.28780 0.29133 0.30098 0.32482 0.31508
445152 9.78589  3.52388 3.68651 4.99172 2.82333 1.69656 3.99531

Bk B L W W R

d 3] 003053 0.07363  0.07000 0.06248 0.05580 0.05024 0.04577 0.04192
0.33337 033450  0.33503 0.33476 0.33439 0.33409 0.33388 0.33372
3.64033  1.51967  1.60354 1.79366 2.00372 2.22181 2.43564 2.65663

IL.D. Realizing correlations between basis sets and the Slater-Condon parameters.
(Obj. D.2.1.4)

The radial parts of the atomic orbitals are directly determining the so-called Slater-
Condon parameters, which, in their turn, are establishing the spectroscopy of the atomic
species. We devised codes for the computation and adjustment of the Slater-Condon parameters
as function of a given basis sets. We will treat the atoms of several representative non-metal
elements.

In the case of carbon atom, the lowest levels are due to the (2s)2(2p)2 valence
configuration. Avoiding the explicit account of (2s)> part, one may deal directly with the two
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electrons in the triply degenerate p shell. There are three types of spectral terms emerging from
the p? configuration, 'S, 'D and P, with the following energies:

E| °P| =2 —pE BT (IL.12.2)

B 'D] = B 4 02 (IL12.b)

E[!S] = Ew, =0-3E[*P]-5E['D] = FeP*P + 10F.P*PE| S| = PP + 10FP?P

(IL12.c)

Considering that the Slater-Condon parameters are positive, one may easily see that °P is
the ground term. The experimental split by spin-orbit is small, with the /=0, 1 and 2 states at
the relative 0, 16.4 and 43.4 cm™(NIST).”” Subtracting the barycentre of the spin-orbit
multiplet, the other states 'D and 'S appear at 10163 cm™ and 21618 cm™. Taking the formal
gaps to these states with respect of *P groundstate as .6F, " and 15F,""*” | respectively, one
may find two estimations of the ng’ZPFZZP‘ZP: 1693 cm! and 1441 cm'. Taking the barycentre
of the excited states (weighted with their multiplicity) one finds the average estimate FZZp’ZP
=1609.62 cm™!. Considering the eigenvector obtained with the LDA treatment and the above
optimized STO primitives, one obtains FZZP‘ZP =1911.10 cm’', i.e. a slight overestimation. The
parameter can be brought exactly to the experimental average, performing a rotation between
the canonical 2p and 3p orbitals with the {0.98534, 0.17057} vector.

Arriving at the nitrogen atom, one finds the situation of half-filled p shell, in the
(25)%(2p)° configuration. The terms resulting from this configuration are “S (groundstate
resulted from applying the aufbau principle, with all electrons parallel), 2P and 2D, having the
following energies:

E[*S] = E'core + 3f2p + 3Fg"P-15FPPE[ *S| = 3R 7% — 15F %P,
(IL13.2)E[?D] = E'core + 3f2p + 3FPP-6F,7F

E| D] =3F P — R P, (IL13.b)

B] ®F) =f@pser (IL13.c)

Relative to the *S groundstate, the *D and P energies are about 19228 cm™ and 28839
cm™, respectively. Taking their barycentre and equalling it with (45/4) F;JZP'ZP, one obtains the
2029.52 cm! for the 2p-2p Slater-Condon parameter. The canonical 2p orbital from the above
STO fit yields the 2355.15 cm™ overestimated value, the adjustment being realized with the
{0.98680, 0.16193 } mix of the primary 2p and 3p forms.

The case of the oxygen is, algebraically, similar to the carbon atom, since the p4

configuration can be regarded as two holes placed in a filled p® shell, paralleling then the p?
situation, the formal energies being:

E[°P] = 657 — 155, (IL14.2)

E['D] = 6F " — 9P (IL14.b)

E[ls] = EML=0-3E[1P]-5E[1D] — F§P.2P + 10F§P,2PE[ 15] — 6F;)ZP'ZP
(IL14.c)

The wavenumbers of the excited states, 'D and 'S terms, are placed at 15815 cm™ and
33740 cm’!, respectively. The different terms may give two estimations of the F,*”” intra-

shell parameter, respectively 2636 cm™ and 2249 ¢cm™!, or 2507 cm™ from the barycentre. The
direct STO estimation yields 2790.31 cm™, adjusted to the exact value with the price of the
{0.99097, 0.13409} vector transformation between the nominal 2p and 3p, yielding therefore
an approximation to the correlated 2p basis.
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ILE. Adjusting basis sets for the d and f elements by optimization to experimental
atomic spectra and Slater-Condon parameters. (Obj. D.2.1.4)

We will take as example for the treatment of the d-type transition elements the case of
the Ni(II) free ion. The experimental data of Ni(II) ion (NIST) show a rather visible spin-orbit
split of the ground term, 3F,, with relative values 0, 1360.7 cm 'and 2269.6 cm™ for respective
J=4, 3 and 2 sub-multiplets. The barycentre of this set estimated as the average with the 2J+1
weights, is 993.9 cm™!. Extracting this amount from the energies of other terms (these averaged
too, when spin-orbit multiplets appear), the levels are E('D)= 13037.6 cm ™', ECP)= 15836.3
em, E('G)=22114.7 em™ and E('S)= 51538.0 cm™". For d elements is convenient to convert
the Slater-Condon integrals in the so-called Racah parameters:

A = Fdd.49Fddg = pdd _ 49fFdd B = Fdd_5fpddp — pdd _ gpad and C = 35Fd
(IL.15.a-c)

The analytic expressions of spectral terms, as function of Racah parameters, from table
encapsulated in the Figure IL.2 can be fitted, by least square procedures, obtaining the B=1154.5
em! and C=3946.6 cm™' values, rendering the following numeric approximations: Ef('D)=
13665.8 cm’!, Ea(*P)=17317.5 cm™, Ea('G)=21747.3 cm™ and Es('S)= 53025.5 cm!.

S S=0 =1 4 rR(r) / Bohr P
S 28A-28B+28C 0

P 0 28A-35B+21C

D 284-45B+23C 0

F 0 28A-50B+21C

G 28A-38B+23C 0

Figure IL.2. Synopsis of the Ni(IT) treatment, illustrative for the d-type elements. Left side: table of analytic
formulas for the spectral terms, as function of Racah parameters. Right side: the r-R(r) radial profile of the
canonical 3d orbital (dashed line) compared with those adjusted to the retrieval of experimental Racah parameters.

The calculation done with optimized STO primitives (prepared with a numeric LDA
treatment) yields the B=1214.82 cm™ and C=4450.47 cm™! values. This can be adjusted by a
remix between 3d and 4d functions, with the {0.99275, 0.12017} coupling, retrieving the
B=1092.58 cm™ and C=3962.27 cm™" values, close to the experimental set. From the right side
of the Figure I1.2, one observes that the adjusted parameters are obtained with a profile slightly
more extended at larger radii (labelled 3d”), as compared with the canonical 3d function.

The lanthanide series will be exemplified by the case of the Nd(IIl) free ion, performing
procedures similar to those exposed at the above d-metal ion discussion. First, will consider
the experiment data, obtained from the handling of optical multiplets. All the spin quartet terms
and a part of the doublets have simple linear formulas as function of the Slater-Condon
parameters (See left side of the Figure I1.3). There are several data available: *F, G and K,
relative to the *I groundstate, at the 10207 cm™, 16040 cm™ and 17210 cm™ barycentres,

respectively. These are sufficient for an estimate the experimental parameters: sz I = 36279
em™, F/7 = 4481 cm™ and F// = 6.86 cm'.
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[*F ]—35Fff + 927 —e637F)f > RiCESAE
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[*G] = 55F/ + e6F/" —1001F/f
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Figure IL.3. Synopsis of the Nd(III) treatment, illustrative for the d-type elements. Left side: Analytic formulas
for the spectral terms, as function of Slater-Condon parameters. Right side: the r-R(r) radial profile of the canonical

4f orbital (dashed line) compared with those adjusted to the retrieval of experimental F f'} parameters.

We optimized a basis having three STO primitives with k=4 preexponential factors and
the £={0.138, 1.067, 8.277} set of exponents, aside two primitives with k=5 and £ ={0.006,
4.415}. The canonical 4f orbitals lead to a certain over-estimation of the Slater-Condon

parameters, as in all the above previously mentioned instances: sz I = 466.85 em’!, Ff f =
60.40 cm™! and F;sf /=642 cm. Proceeding, as previously, to the coupled rotation of the 4f

and 5f orbitals, one achieves a new 4f shell with Fk{ T values closer the experimental data,
362.81 cm™, 46.36 cm™ and 4.91 cm™', for the outlined parameters. The right side of the Figure
I1.3 shows that these results imply a certain “breathing™ of the shell, reaching slightly expanded
radial shape. The canonical orbitals have somewhat compressed radial profiles, as consequence
of a compensation effect: the shrunk shape enforces larger positive energy of inter-electron
repeal, while increases the modulus of negative energy of electron-nuclear attraction. The fit
to experimental parameters of the electronic spectra prepares contracted bases with a better
account of the correlation effects.

ILF. Correlations between computed and experimental structural data. (molecular
geometry, spectra, magnetism).

The application part concerns the magnetism of a new series of cyanide-bridged
assemblies, { KH[Ln2(2,3-pzdc)2(CH30H)(H20)7][M(CN)s]}-5H20 (Ln** = Nd, Gd, Tb, Dy;
M** = Mo, W).*! The setting ab initio calculations for lanthanide complexes is a non-trivial
task, the delicate situation being a reliable orbital guess, to initiate the calculations. Therefore,
a customized choice is a starting set which is produced by merging the fragment orbitals
obtained in preamble for the free lanthanide ion and the remainder of the molecule. This setting
describes most appropriately the weakly interacting f shell of the lanthanide ions. We retrieved
the orbital components of the Zeeman Hamiltonian by extracting extra-output from the black
box of the computation, namely the matrix elements of the L., Ly and L; operators. This part,
as well as the spin-type Zeeman, enabled the explicit implementation of the magnetic field
dependence of the Hamiltonian and the ab initio simulation of the magnetic and optic properties
of the considered systems. As seen in the right side of the Figure I.4, the first-principles
simulation of the magnetic susceptibility leads to curves very close to the experimental ones, a
remarkable fact, given the intrinsic complexity of the magneto-structural correlations in f-type
complexes. The left side of the Figure 11.4 illustrates the simulation of the full spectra from the
f-type multiplets (in the upper part), with details of the lowest levels (in the bottom part). The
split of the lowest multiplet is in principle visible as detail in the optical spectra. Although the
actual measurements had not the sufficient resolution, the credit guaranteed in the general
retrieval of magnetic properties, enables the computation as good predictive tool, replacing the

16



experimental missing information. Thus, one may predict (as the series of data shown in the
left-bottom side of Figure 1.4 shows) a strong dependence of the fine structure of the spectrum
on the coordination sphere of the lanthanide ions. The considered systems are belonging to the
class of Metal-Organic-Frameworks (MOFs), having a relatively strong 3D lattice and also
some labile ligands (which can be partly eliminated or added, subsequently). The sensitivity of
the spectral and magnetic properties to this geometry change allows the speculation on their
functionality as sensors to small molecules, accommodated in the voids of the MOF lattice.

RO | E (envly 30
7000 — i — w........--n..lnnvc-uv--.
6000 — E— "“.
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Figure IL4. Left panel: computed spectral multiplets of the complexes at different coordination geometries, after
eliminating weakly bonded water and methanol ligands, considering for simplicity, that site 1 is occupied by
spectrally inactive Lu, while site 2 has the Tb ion. Right side panel: Temperature dependence T vs. puT of
{KH[Ln2(2,3-pzdc)(CH:OH)(H-0)7][W(CN)s]}- 5H20,(Ln=Nd, Gd, Tb,Dy) compounds. The continuous lines
are marking the ab initio simulated curves.
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Figure ILS5. The Ligand Field spectrum of the J ground multiplet of the Ln(III) ions in isomorphous complexes
(left half, a and a’- Nd; right side, b and b’ -Dy). The a and b panels correspond to site 1, while b and b’ stand for
site 2. The vertical bars at each levels mark, the percentage of J. projections contributing to the given state

Aside the Slater-Condon parameters, discussed previously, the properties of the
lanthanide ions in molecules or lattices are determined by the spin orbit (SO) coupling and
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Ligand Field (LF) parameters, due to the immediate environment. Although, with special care
the DFT treatments can be applied to lanthanide compounds, the proper approach belongs to
wave function theories, namely via CAS methods. In a further insight, we revealed the
composition of each state from the LF-determined J spectrum, in terms of J; projections (See
Figure I1.5). The histograms drawn at each level corresponds to the relative percentage of the
J; elements in the corresponding wavefunction. The diagrams are symmetric with respect of
the +J. couples. One observes that the groundstates are made preponderantly of elements close
to the extremal projections, J; =tJ. Such a situation is well evidenced for the Dy case, where,
for both sites, the groundstate consists in almost pure £15/2 components. Comparatively, the
Nd system has a spin admixed groundstate with comparable participation of the £9/2 and £7/2
terms, and a certain tail of £1/2 elements. This suggests that, in the case of Nd(III), the f shell
is more perturbed by the environment, while in the Dy(III), the lanthanide contraction leads to
a somewhat more retracted radial profile (as our considerations on bases shows) and a more
atomic-like character of ion in the molecule.

III. New functionals and functionalities in electronic density based-

methods

ITI.A &B. The elaboration of the theory of a new type of density functional, respecting the
spherical symmetry of the atom. (Obj. D.2.2.1). The relationship with the Slater-Condon
parameters / The elaboration of the atoms’ treatment codes with the new forms of the
density functional in Gaussian, Slater or numerical basis sets for extended series of atoms.
(Obj. D.2.2.2)

To reach the title objectives, one must prepare adequate ancillary tools in order to describe
the exchange energy. In this view, we will proceed to the dichotomization of two-electron terms
in components, doing their evaluation on numeric grids. Note that we are able and we do the
full analytic calculation of two-electron integrals, repeating the procedure in the numeric mode
only for detective purposes. The numeric integration over functions with exponential profiles
is better done with a grid with exponential spacing of the points. Such an integration scheme,
due to Weber et al.*2, uses the following definition for the m-th point:

exp(mh)—1

exp(h)-1 (IIL.1)

hn = 0Ty

depending on the spacing of the first point with respect of the origin, éro, and a scale parameter,
h. Practically, the same grid is used in several other programs doing numeric calculations of
the atoms with the purpose of preparing pseudo-potentials for plane-wave calculation, as is the
case of ATOMPAW module from the ABINIT suite.

Deciding a maximal radial extension, the set, rmax, the number of points results as:

Monar =[50 (1+ T %)] : (I11.2)

the square brackets meaning the integer taken from the function. Conversely, if desire a certain

number of points over a given radial interval, must fit correspondingly the h parameter. The
points are associated with a set of weights:
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. exp(mh)
w,, = h-dn ()1 °

(1I1.3)
so that the numeric integration of a given function f{r) can be formulated as a weighted sum of
the function over the grid:

[ f()dr = Tymew,, - f(r) (IL4)
a double sum of this sort being performed for two-dimensional integration.

Then, aiming for the account of a given exchange element, Ja5, the entities to be integrated
over the 2D grid are:

min(ry )k

chrlzzgt = rr?:rana(rm)Rb(rm)Ra(Tn)Rb(rn) nggxxgb 2 (IH-S)

max(rm, ) k.

The yu* coefficients are formalizing the definition of J, integrals for a given shell
couple, ab, as combination of Slater-Condon parameters with &k superscript. Conventionally,
the m and n indices are running on the electrons labelled 1 and 2. One may produce a partial
summation, emulating the integration over the electron #2, which corresponds the one-electron
operator in the mean field treatment of an exchange element:

Yi’%b ~ Z"-m;lx Xr?:l;twn = f;!?(rl) . (1116)

n=

The quantities produced from this partial integration will be used in the further analysis.
The numeric estimation of the whole exchange coupling integrals can be termed as:

~ V'Mmax ab _ yMmax V" Mmax ab
]ab ~ Zm=1 Wi Ym - En:] m=1 Wm Wn" an (IH-T)

We probed that, in the calculations described below, the numerically estimated integrals
are resembling in a fourth digit, or better (in atomic units), the analytic ones, working over a
300 points grid, established with the following parameters: 6ro=0.001 Bohr, r.=20 Bohr and
h=0.02.

With the leverage described at equation (I11.6), one may select from the sum of total
energy, in (4), the exchange components integrated only on one electron:

' 1 s
Ve (r) = Zicw iur,, {—Ptfpui, (; + 20’11-0'1:!.,) - Faarg (7"1)} ) (111.8)

Vi) = Xylar - oy, + B - pr,zj +V- Utf(ﬂ'ti + 1)]7;,-;:1(?"1) s (11L9)

Then, summing over all the intra- and inter-shell contributions, we obtained the energy profiles
of total exchange density, Vy.
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Figure II1.1. The exchange energy distribution for Ne atom, as function of radial coordinates of formal
electrons 1 and 2. (a) the total exchange energy; (b) the exchange due to inter-shell s-s interaction; (c¢)
the s-p exchange coupling; (d) the exchange energy inside the p shell.

The Figure IIL1 details the exchange energy in the X,», components derived from equation
(11) for the case of neon atom. The maps for the other atoms are looking qualitatively similar.
The panel (a) sums all the contributions, at each point of the 2D radial grid. The other panels
are detailing the distinct shell contributions. The panel (b) shows the interactions between the
two s shells, which can be ascribed as X;f;lzs. This shows positive zones, due to the negative
Is(r1)2s(r2) areas, whose action is amended with the negative sign of the exchange in the total
energy, -2J152s. However, the total balance of the exchange is negative, due to net positiveness
of the exchange parameters. The panel (c) shows the s-p inter-shell exchange, each point
containing the X;f;fp + X;s,fp. The panel (d) shows the p intra-shell exchange, small in relative
value, as compared to the other parts. For comparability, all the 3D maps from Figure I1I.1
(exchange energy vs. r1 and r» grid points) are drawn at the same vertical scale.
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Figure 1IL.2. The grid representation of the quantity defined in equation (111.10).
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We propose as interesting quantity the following transformation of Slater-Condon primitives
involved in the exchange integrals:

min(ry,r;) k 2

Ugp(ry, 1) = T Ry, (TR, (r) Ry 1, (1) Ry, 1, (72) (II1.10)

1
plr max(ry,rz)* “
Performing over such terms the above numeric discretization and taking the corresponding
summations, as paralleling the obtaining of the total energy, one may obtain profiles (see Figure
I11.2) that can be interpreted as an object useful in the further quest for new empirical recipes
for Fermi hole shape. With the precautional stand demanded when stepping in areas of delicate
subjects, one may propose here the idea of redrawing the Fermi hole in atoms as a spherical
crust, instead of actual image of local hole in homogenous or non-homogenous electronic
density. Analysing sections along the r; coordinate in Figure I11.2, one may believe that a sharp
Gaussian profile of the radial section may be a reasonable approximation. This way, we realised
the idea from which we started, represented in the scheme from Figure II1.3.

Homogenous Electron Gas Spherical Electron Cloud

o

Figura IIL3. Synopsis of the resulted paradigma change: the treatment of the Fermi hole it is
inadequated for the atoms, violating the spherical symmetry. The right-half of the scheme suggest
replacing the hole with a spherical crust with Gaussian profile or Slater.

ITI.C. Implementation of the new density functional types in an open-source code
routine. (Obj. D.2.2.1-D.2.2.2)

The technology used nowadays in electronic structure calculations, based on GTO, eliminated
the concept of separability between the radial and angular part of the wave function and also
the explicit dependence of the Coulombian, exchange and correlation effects from the Slater-
Condon parameters. To discourage the use of the “black box” methods, we implemented the
general treatment in Matlab-Octave scripts, accessible in academic format, on demand.

III.D&G. Corelations between the calculated and experimental structural data
(molecular geometries, spectra, magnetism). (Obj. D.2.2.3) / Implementation of the new
basis set types in an open-source code routine. (Obj. D.2.1.2)

We will continue by revisiting the parameters that are related with the EPR spectroscopy
touching the problem of the hyperfine coupling. Particularly important is the case of abundant
14N isotope, having a I = 1 nuclear moment. We skip the discussion regarding the g factor,
since, in the case of stable nitroxide systems, it does not show spectacular variations, neither
in experimental nor in computational respects, remaining almost isotropic and nearby the free
electron value****. Despite being small in the energy scale, the computed hyperfine term is
very sensitive to the basis set. Is a truism that all of the computed data depend on the method
of choice and selected basis set, but the hyperfine coupling poses quite extreme challenges.
Namely, it measures a coupling taking place at the nucleus (between the nuclear spin and the
nearby spin density), being also sensitive to long-range effects, like the interactions with the
solvent.
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Therefore, a basis set accounting for A parameters should be accurate both at nucleus and
at the outskirts of the atom. Being concerned with the density in the range of the covalent or
ionic radii, most of the bases may ignore the details at the nucleus. For this reason, in
calculations with Gaussian type orbitals (GTOs), must use special bases, explicitly named
EPR-II and EPR-III, when the account of the A-type parameters is envisaged. However, we can
audaciously claim that practically none of the basis sets in use are taking a proper care of the
long-range effects.

A4
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Figure IIL.4. Radial profiles of the 1s, 2s, and 3s atomic orbitals of the nitrogen, computed with STO-
type functions and BLYP functional in the ADF code. The continuous lines correspond to the standard
TZP basis, the dashed lines illustrating preliminary tests with a new basis showing long-range maxima
in the R(r)* functions. The inset shows the r vs. R(r) variation near nucleus.

Figure I11.4 clearly illustrates that the tentatively new proposed basis shows for the 3s shell
(in the r vs. r*R(r)? representation) maxima beyond the atomic radius, at about 6 Bohr. The 3s
in the standard TZP set of the ADF suite has an average radial extension close to those of the
2s, which is not quite reasonable. The 1s are very similar in the two bases, the 2s profiles having
minor mutual differences. The Is and 2s show similar curves when the two bases are compared
in the R(r) function near nucleus. The new 3s, shown with dashed light green in the inset of
Figure I11.4, has smaller value at » = 0 than the 3s from TZP (that here is accidentally coincident
with the 2s curve). This is also reasonable, since larger orbits are supposed to have lower
amplitudes at low radii. In other words, the density must be invested in the atomic periphery
on the expense of lower representation in the inner part. We limited the discussion on the s-
type orbitals, because having non-null density at nucleus are directly responsible for the Fermi
contact phenomena that determine the isotropic hyperfine coupling.

A deal concerning also the deep orbitals is the case of X-ray photoelectron spectroscopy
(XPS). In the continuation of the discussion from the section ILE about the valence-shell-
determined spectral terms of the d-type transition metal ions, taking as example the Ni(II) case,
we will examine the comparison with XPS prototypic data. The basis set is the same obtained
previously, with focus on the d shell, considering now the 2p inner orbitals. The experimental
data were obtained by inner cooperation inside our institute (grace to Simona Somacescu),
recording the corresponding domain in a nickel oxide sample (NiO with rocksalt structure).
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The figure 1115 shows the experimentally recorded XPS profile (continuous line) superposed
on the computed orbital energies (marked by bars). The experimental line shows two main
formations, assignable to the relativistic 2p32 and 2pis2 orbitals, their energy gap corresponding
to the spin-orbit coupling parameter. The inner split inside each peak (because of further
environmental effects and possible spin-other-orbit couplings) are neglected, considering the
experimental barycenters at about 857.8 eV and 880.8 eV for the 2p3;2 and 2pip, respectively,

with a spin-orbit gap &2p=23 eV.

Iz
g
5
0.75 i
&
g
0.5 | &
023
o E(eV)
230 260 870 ER0 290

Figure ITL5. Experimental XPS data revealing the spin-orbit split inside the 2p shell of the nickel atom
in NiO latice, vs. calculated position of non-relativistic ionization potential (I2;) aside the relativistic
2par2 and 2p12 components (marked by bars); The spacing between the 2ps» and 2py2 bars yields the
&ap spin-orbit coupling parameter.

For the calculation of the spin-orbit coupling parameter in a shell generically denoted by
“a”, we adopt the well-known formula:

"= o 1dv(r)
fa=a? J::g Ra(r); d};

Ry (r)ridr 5 (IIL.11)

where a is the fine-structure constant (oe=1/137.036 atomic units) and V(r) is the electrostatic
potential inside the atomic body. For the here fitted basis set of the nickel atom we obtained
the computed £2=22.4 ¢V, which is in excellent agreement with the experimental evaluation.
Although this computation is made for the free ion, it is expected that the long-range
environment has a small impact on the gradient of the electric potential and on the radial atomic
function, for such inner shell. Besides, it happens that the computed ionization potential (taken
as the negative of selfconsistent orbital energy for 2p) falls very well in the range of
experimental data. This is more or less fortunate, since here one may hope only for a semi-
quantitative agreement. We neglected again the lattice effect. We emphasize that the important
result here is the magnitude of the spin-orbit parameter, directly dependent on the quality of
the basis set, less influenced by the subtle lattice factors.
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ITILE&F. The elaboration of the theory of DFT semiempirical varieties, based on atomic
body energies as function of charges and populations. (Obj. D.2.2.4)/ The parametrization
of the DFT semiempiric theory with atomic spectroscopy data, experimentals and
calculated. (Obj. D.2.2.4 si D.2.2.5)

In the following, we will construct a model illustrative for some of the above discussed ideas:
energy derivatives, electronegativity, chemical hardness (electrorigidity), states superposition
and fractional occupation numbers. Namely, we propose outlining the energies of the atomic
bodies as continuous functions of the shell populations. More specifically, since the s*
configuration is a trivial case, the atoms with s°p” and s*p’d¢ valence shells will be considered.
The last one, defining transition metal atoms, is isomorphic with the s%d9f case of lanthanides
(and actinides). The clue of producing the aimed function of energy is to take the interpolations
over spectral states with different shell occupation numbers (integer values), extending the
dependence to general fractional populations and continuity.
The simple case of s' implies the quadratic fit over the energies of the s, s' and s’
configurations. This pattern may regard atoms and ions of alkali metals (s' atomic groundstates)
or alkaline earth elements (s* ground configuration).

Now, we move to the case of main group elements, described by ns.np valence shells, aiming
to design a continuous energy function of s and p shell occupancies, namely for a general s*p”
configuration. Let us adopt the following notation of configuration types:
wa=s2p™” , w1= sp™', wo=p" (IML12)

the subscript marking the integer occupation of the s shell, while the occupation of p, p=n-s, is
tuned along with the Q charge of the concerned atom (depending also on the nuclear charge Z).
Assuming than we can know the energies of @; configurations with i=0, 1, 2 and integer n
(detailing later, how), we propose the interpolating function as follows:

E(s,p)=C,(s)E(®,) + C,(s)E(®,)+ C,(5)E(w,) (IIL.13)

The Ci(s) coefficients are doing the interpolation, accounting the fractional population s of
the s shell, while the general p value of p is subsequently handled taking polynomial functions
of n=s+p, fitting over the available integer n cases of the given atom. The conditions imposed
over the coefficients are to become 1 if the an integer occupation of s shell equals its indices,
while, simultaneously the other two factors are vanishing: Ci{k)=; for i and k running on 0, 1
and 2. In other words, we want, considering (III.12) and (III.13), to retrieve the tautological
relationships E(s*p"3)=E(@>), E(s'p™")=E(ew) and E(p")=E(@o). These requirements are met
with:

C,(s)= és(s -1
C(s)=s2-5) (IM1.14)
C,(s)= é (s—D(s—2)

Besides, the coefficients obey the following weight properties:
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> .Ci(s)=1
Yi-C(s)=s (IIL15)
Z;','ECE.(S):S2

The E(wi) energies for integer n populations of the valence shells are obtained as average of
the spectral terms, as will be illustrated immediately, followed by the fit with a polynomial (at
least of second order if more than three points are available). The model can provide atomic
energies at fractional s and p occupations, mimicking then, on experimental grounds, what a
DFT calculation can do. Taking derivatives, one may obtain electronegativities of s and p
shells, their electrorigidities or the inter-shell electrorigidity (the second order derivative with
respect of dsdp variation). The spectral terms can also originate from a multi-configurational
calculation, the model intermediating then the conversion to a DFT phenomenology. The DFT
calculations can directly provide the configuration energies and their derivatives, as will also
discuss later for the nitrogen atom, as example.

Now, we will construct the interpolating function for the case of a sp’d“ valence shell,
specific to transition metal atoms. The representative configurations are defined as follows:

woo=d" | @o=sd"™! | a)m:pd”'l ’

ano=s*d"? | wu=spd? , we=pid? , (I1.16)
serving as components for the following interpolation:

E(s, p,d)=Cyo (s, PYE(@y )+ Cpo (5, IE(@, )+ Cy (5, ) E(@y,)

+C,, (5, PYE(@,, )+ Coy (5. P)E( )+ Cop (5, PYE(@¢y) (HL17)

The coefficients are explicit functions of s and p populations, the dependence on the d=n-s-
p being incorporated in the E(®;;) configurations. The subscripts are marking the situations of
integer occupation of s and p shells. The coefficients are obtained from the condition
Cii(k,[)=0i8;, with for i, j, k and / running on 0, 1 and 2, meaning that the functions becomes
the energy of a primitive from the (III.16) set, at corresponding integer occupations of s and p
shells. Their expressions are:

|
Cy(sim) 25(1757 PR2—s—p), C,(s)=sp,
1
Cio(s,P)=5(2-5—p), Cyu(s)= Es(sf D, (I11.18)

1
Cm(ss P): p(z_“"—p)s C@g(‘c)zap(p_l)-

Interestingly, the following regularities are obeyed:

ZC-}:L Zi-j-C,.j:s-p,

=2 i+j<2

i-Ci=s,  DiC; =+, (IIL.19)
i+ j=2 i+ j<2

>iCi=p,  DiC;=p".

i+ j<2 i+j=2
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As in the previous case, the energies of primitive configurations, E(wj) for integer shell
occupations n=s+p+d, are found handling experimental data or computations of different sorts,
drawing then a polynomial interpolation that renders their continuous dependence on n,
equivalent to fractional d occupations, while the fractional s and p are emulated by the (IIL.18)
weighting. The procedure for the transition metal ions can be extended for lanthanides with
s*d“f’ shell, where, in isomorphic manner, the former role of d is taken by f, while d behaves,
algebraically, as the former p shell.

Note that, in the elaborated model, the (I11.13) and (IIL.17) equations correspond to the point
that the fractional occupation numbers in DFT are conceived as superposition of states (as
averaging, not as configuration interaction).

Now, the atom with s*p” configuration will be exemplified, taking the nitrogen atom. The
spectral terms are taken from NIST atomic levels database. Generally, each *![L] term splits
into spin-orbit J multiplets, *'[L];. Furthermore, we aim a phenomenological model, where
the energies of a configuration is defined as average of all the **'[L] terms arising from a
certain @ configuration, e.g. one from the list (I1L.12) or (II1.15). In this view, the term energies
are weighted with their total, orbital and spin multiplicity, (2L+1) (25+1), having:

S @L+H2S+DE(*[L] e o)

E(w)=LS (I11.20)

STQL+1)2S +1)

The databases for a given charge of the atom are reporting the levels with respect of its
groundstate. For our purpose, we need that any term to be related to a unique convened level,
the neutral atom, for instance. Then, the terms of positive ions must be shifted with the sum of
the spectral limits of all the previous charge states, down to the neutral atom. The spectral limit
is the value representing the ionization energy of the groundstate, bringing it to the groundstate
of the atom incremented with one more positive charge.

Table 3.1. Available spectral terms for nitrogen atom, at Q=0, with respect of parent configurations
and subsequent handling by averaging and energy shift. The first line gives the groundterm, while the
last one, the spectral limit, All values are in cm™.

Configuration Relative

Average Relative to
averaged to

Cfgs.  Terms qverJ neutral N energy (V8 N 232.2p3
multiplets groundstate - o
groundstate)  average

S 0 0

2s%9p* 8 0 0 18266 0

2820 D 19228 19228

2s22p° 7P 28839 28839

2s.2p* P 88129 88129 103161 84896

2s2p* D 121201 121201

Limit 117356

The Tables 3.1 and 3.2 are illustrating the data for the series of nitrogen atom with
charges 0 and +1. The first line of the table gives the ground term of each system. After
averaging over the J multiplets, the term value may result slightly shifted from local zero, as is
the case of *P in Table 3.2, the 103 cm™' value resulting from the weighting of 0, 49 and 131
cm’!, for the J=0, 1 and 2. Another shift occurs at the end, given in the last column of each
table, subtracting the average of 2s2.2p® configuration, itself shifted from zero, because of
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incorporated *P and D excited terms. Taking an average over different spin states represents a
conventional limit of the model, obtaining then an enforced restricted spinless picture. Namely,

each s°p’ configuration is tacitly considered as half spin-up, s***p?®2 plus half spin-down,
Ssﬂfzppﬁfl .

Table 3.2. Available spectral terms for nitrogen atom, at Q=1, with respect of parent configurations
and subsequent handling by averaging and energy shift. The first line gives the groundterm, while the
last one, the spectral limit. All values are in cm™'.

Configuration Relative
averaged to
energy (vs N*  2¢2.2p?
groundstate)  average

Average Relative to
Cfgs. Terms overJ  neutral N
multiplets groundstate

*Py 0 117356
2s22p> P 103 117460 124703 106438
'D 15316 132673
'S 32689 150045
2s2p° 38 46785 164141 224535 206270
D 92244 209600
P 109217 226574
'D 144188 261544
3 155127 272483
lp 166766 284122
2p* P 220293 337650 337650 319384
Limit 238750

The further step is fitting the available data with a convenient polynomial. The
operation is illustrated in the Figure II1.6. Certain configurations are not findable at some
charges, as is the wg for the neutral atom, e.g. the p5 case. Or, the @2 is impossible at =4, since
the system has only one electron. Also, there are no data on the negative ions. Having for each
series at least four available points, the data can be fitted with cubic polynomials, the results
being shown as continuous lines, passing through the marked points of the left panel, and
extrapolated for negative charges of the atom.

The experimental information is complemented with computed configuration energies,
represented in the right side of the Figure II1.6. To be distinguished from experiment, now, all
the possible configurations, with total population ranging from n=0 (Q=5) to n=8 (Q=-3) can
be obtained. A very suited code is the ADF (Amsterdam Density Functional), since it allows
controlling explicitly the orbital populations, using fractional occupations and emulating the
spinless restricted convention. As one may see, comparing the two sides of the Figure I11.6, the
calculation is well paralleling the available experimental data and simulates the unknown part
in a way that seems better than the extrapolations from experiment. This is noticeable
particularly considering that the simplest functional was used, the LDA, altogether with a basis
set of average quality (TZP). With the discussed model and data, we can do several numeric
experiments. The Figure III.7 shows, in the right side, a verification of the Janak theorem: it
finds a series of lines with slope practically equal to the unity, when draw orbital energies, as
resulted directly from the DFT calculations against the derivatives performed with the
continuous energy model. There are six curves, three corresponding to the s shell, from the @
(i=0,1,2) configurations, at integer charges from Q=-3 to +5, and three for the p shell. The lines
are practically superposed and the points not well visible, in their series, but we aim here to see
the global fulfilment of the correlation, not judging each curve.
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Figure II1.6 The energies of a»= s’p"*, = sp™' and ex=p" configurations for the nitrogen atom. Left panel:
available data from experiment. The marked points are the values collected from Tables 1.A-1.E, converted to
atomic units (Hartree), while the lines represent their fit by cubic polynomials, as function of total shell population
(n) or atom charge Q. Right side panel: the configurations computed directly in DFT, with ADF code (LDA

functional, TZP basis set).
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Figure IIL7. Left side: The assessment of Janak theorem, retrieving the equality of the energy derivatives
(ascribed as negative of electronegativity, -y) with the actual exs energies for 25 and 2p shells, both based on
LDA/TZP calculations with ADF code. Right side: comparison of energy derivatives (labelled as -y) with daita

from DFT-ADF calculation versus the interpolation to experimental points (NIST).
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Figure IIL8. The comparison of electronegativity (left side) and hardness (right side) computed as energy
derivatives (abscissas) versus Mulliken-type approximations (half-sum and half-difference of ionization
potentials and electron affinities). All the data are coming from the DFT calculation with the ADF code.
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The right side panel compares the derivatives from the direct DFT calculation with the
model based on NIST points. One may conclude a good match, the deviations appearing nearby
the points that fall in extrapolation regime, in the experiment-based model, especially in the
upper-right corner, which corresponds to weak orbital stabilization, or even positive energies
of the shells in negatively charged systems. This analysis is relevant, because there are no
primary experimental data which can be directly compared with Kohn-Sham orbital energies,
needing the interim support of a model like the here presented one. To the best of our
knowledge, this is an unprecedented illustration of such a basic problem.

In the Figure III.8 we are checking the validity of Mulliken approximation for
electronegativity and the related form for electrorigidity. For this purpose we used only the
calculated data, since we aim to verify a consistence of theory with itself and, besides, in this
way we have more accounted points than in the experimental limit. The ionisation and affinity
of the s shell is done with the help of (II1.13) function, as the following differences: Ii(s,p)=E(s-
1.p)-E(s,p) and As(s,p)=E(s,p)-E(s+1,p), these being regarded also as continuous functions. The
p analogues are I,(s,p)=E(s.p-1)-E(s,p) and Ap(s.p)=E(s,p)-E(s,p+1). There are zones where the
definitions are not nominally valid: e.g. the ionization of s from fractional configurations with
s<l would lead to negative populations, while the affinity for s>1 would represent an
impossible configuration, with more than two electrons in the s orbital. However, the non-
physical margins can be formally ignored, once are used to produce approximations to
derivative functions that are allowed in the whole O<s<2 interval. The left side from Figure
III.8 proves that the electronegativity (taken as derivative of total energy) is very well
approximated by the (/4+A)/2 formula, for all the possible situations. The six lines (two shells
for each of the three types of configurations) are all superposed as a diagonal slope. Is not
important that series are not well visible individually, the point to be retained being the overall,
approximate but good, validity of the Mulliken formula. The (/-A)/2 representations against the
second order derivatives for the s and p shell shows a slight deviation from the unitary slope.
This is normal, since the higher derivatives are expected to carry more advanced details of the
intimate electron structure, mimicked with lesser extend by finite difference approximations.
However, the correlation is good, validating then the convenient and simple Mulliken-type
approximations to electronegativity and electrorigidity.
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Conclusion

We approached the issue of revisiting the basic issues of basis sets, assessing prototypic
cases from the beginning and the end of periodic table. Namely, the account of orbital energies
of the H atom with the existing stock of Gaussian Type Orbitals was exhaustively mapped.
concluding a quasi-general unsatisfactory performance, prompting us for the fuhuwe
improvement. On the other side, the basis sets for the f shell of lanthanides were produced with
the help of plane-wave methods, considering that this frame can be extrapolated to the infinite
dimension. Specific properties of lanthanide atoms in molecules, ligand field and exchange
coupling parameters were discussed, whose computation account is implicitly determined by
the quality of f-shell basis sets.

We continued with the elaboration of a new theory and the corresponding algorithm for
the treatment of the spherical mediated atom, within the wave-function and density functional
theories. The review of he basis sets continued with series of atoms and ions of different types:
non-metals, transitional d and lanthanides, presenting new principles and results, both in
Gaussian and Slater formats. Special attention was paid to fine tuning the bases, to reproduce
excited states and related parameters, Slater-Condon or Racah. Applications in spectroscopy
and magnetism are presented. The whole process involved a significant effort in writing new
codes, covering the methodological issues developed.

We invented a new principle to construct and analyze density functionals, obeying the
spherical symmetry of the atomic bodies. Besides, a new phenomenological version of density
functional theory was designed, which can be based on experimental spectroscopic data, or
with alternative calculations from wave-function-theories. Corroborated with the drastic
revision of principles and methods concerning the orbital atomic bases, we realized interesting
breakthroughs which have to be further consolidated in future works.

ek
B
Ao ek 2k
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Appendix

Table I.A1. Orbital energies (in Hartree) for H atom, taken by an extended series of GTO
bases.

n 1 2 3 4 5 &
Exact -0.5000 -0.1250 -0.0556 -0.0313 -0.0200 -0.0139 etc
STO-2G -0.4544
STO-3G -0.4666
STO-6G -0.4710
3-21G -0.4962 0.5865
3-21GsP -0.4970 0.3739
3-21++G -0.4978 -0.1154 0.73289
4-31G -0.4982 0.4e09
4-22GSP -0.4993 1.8287
6-31G -0.4982 0.4€09
6-31G* -0.4982 0.46E09
6-31G** -0.4982 0.4€09 1.6342
6-31+G -0.4982 0.4809
6-31+c* -0.4982 0.480%9
E—31l+E** -0.4982 0.4609 1.68342
E-31++G -0.4988 -0.1164 0.6e184
E—-31++G* -0.4988 -0.1164 0.e184
6-31++G** -0.4988 -0.1164 0.6184 1.6342
E—31l++G**-J -0.4996 -0.1166 0.4537 1.6342 4.2383 24.2144
6-31G(2dE, p) -0.4982 0.2806 0.4€09 3.-3265
6-31G(3df, 3pd) -0.4982 0.00&7 0.4€09 1.3786 2.648¢ 7.7471
6-311G -0.4998 0.0259 1.8865
6-311G* -0.4998 0.0259 1.8865
6-311G** -0.4998 0.0259 0.98537 1.88€5
E-311+G -0.4998 0.0259 1.BBES
6-311++G -0.4998 -0.1188 0.1757 2.0356
6-311+G* -0.4998 0.0259 1.BBES
6-311+G** -0.4998 0.0259 0.8537 1.8B65
6-311++G* -0.4998 -0.1188 0.17%7 2.035¢
6-311++G** -0.4998 -0.1188 0.1797 5.9537 2.0356
6-311+G{2d,p) -0.4998 0.025¢9 0.8537 1.8B65
6-311++G(2d, Zp) -0.4998 -0.1188 0.1797 0.2806 2.0356 3.3265
6-311++G(3df, 3pd) -0.4998 -0.1188 0.0067 0.1797 1.3796 2.035¢
6-311G(2df, 2pd) -0.49%8 0.025¢% 0.2806 1.8B65 2.648¢% 3.3265
MINI {(Huzinaga) -0.4970
MINI (Scaled) -0.4659
MIDI (Huzinaga) -0.4970 0.3741
MIDI! -0.4970 0.3741
8V (Dunning-Hay) -0.4976 0.5287
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SVP (Dunning-Hay)

SVP + Diffuse
{Dunning-Hay)

DZ (Dunning)
DZP

DZP (Dunning)
DZP + Diffuse
{Dunning)

DZP-DEH
DZVP (DFT)
DZVPZ (DET)

Ahlrichs VDZ
Ahlrichs pVDZ
Ahlrichs VTZ

ADZP
ATZP
BOZP
BSZP

IGLO-IT
IGLO-IIT

ANO-RCC

Roos Augmented Double

Zeta ANO

Roos Augmented Triple

Zeta ANO
Sadlej pvVTZ
Sadlej+

SEKJC (p,2d)
SBKJC VDZ ECP
LANLZDZ ECP
LANLZDZdp ECP
CRENBL ECP

Def2-8V (P)
Def2-SVP
Def2-SVED
Def2-TZVE
Def2-TZVED
Def2-TZVEP
Def2-TZVEPD
Def2-QZVE
Def2-QZVED
Def2-QZVEP
Def2-QZVEPD

co-pVD2

coc-pVDZ-F12

-0.
=0.
-0.
=0.
-0.
-0.
-0.
-0.
-0.
=0.
-0.

=0.

.4976

.4993
.4976
. 4991
.4976

.4993
.4991
.4982
.4982

.4993
.4993
.4998

. 4991
.4998
.5000
. 5000

.4998
L4999

.5000

.4999

.5000
.4998
.4998

.4978
.4962
L4976
.4993
L4993

4993
4993
4993
4998
4998
4998
4998
5000
5000
5000
5000

4993

.4998

.5287

.1023
L5287
1530
.5287

.1023

0.1455
0.41€5

0.1817
0.1817

-0.
0271
-0.
-0.
-0.
=0.
-0.

L0271

.1231
.1233
.1231
.1244

. 0213
.0462

.1231

.1201

.1209
.1208
.1246

.0874
. 5865

.1004
L1205

L1817
L1E17
-0.
« 0271

0735

0927

0923
0525
1015
0525
1015

18186
. 0258

-0.

(o > S o o S

-0.
1359
-0.
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L0543
L4362

. 7408
L0543

.0485
.Bogl

.0379
.0850
.1037
.0825

L7673
.2100

.0905

.0438

.0779
.0885
.1094

0792

« 2552
. €702

. 0485

. 0485
. 0271
. 2985
L0271
1359

0525

0525

L5104
L1414

1.

1.

o o O O

[

-0.

[ = S o B N = R

4362

4362

L2770
L1612
.1le&0
L0721

. 8424
L8126

.0B48

.421¢
L2401

0547

L8377

. 7478
L7667

.8o81
.2027
.8981
8376
L1307
. 3589
L1307
.3589

.BBE3

o o o B

-0.

L

. 3698
.3834
L2262
L1834

L8174

LE171
.5754

0442

.8981
.8245
.8981
.5534
. 7307
.5534
L7307

w3221

0.4502
0.3631

-0,

i e = = - )

3895

.3558

.5052

L8124

0247

.1592
. 8245
.8026
.5534
.80286
.5534

ete

eto

ete

ete

ete
etc
ete
etec

ete



co-pVDZ-F12 MP2 Fit
cc-pVDZ-F1Z OPTRI
co-pVDZ-fit2-1
cc—pVDZ-RI

cc-pVTZ

co-pvVTZ-F12
co-pVTZ-F12 MP2Z Fit
cc-pVTZ-F12 OPTRI
co-pVTZ-fit2-1
cc-pVTZ-RI

co-pV (T+d) 2+
cc—pVQZ

cc-pVQZ-F12
co-pV0Z-F12 MPZ Fit
co-pVQZ-F12 OPTRI
cc-pVQZ-RI

co-pV5Z

cc-pV5Z-RI

cc-pVezZ

coc-pVEZ-RI

cc-pVBZ

aug-cc-pVDZ
aug-coc-pVDZ_OPTRI
aug-cc-pVTZ
aug-cc-pVTZ OPTRI
aug-coc-pVoz
aug-cc-pVQZ OPTRI
aug-cc-pV5Z
aug-cc-pvV5%Z_OPTRI

aug-cc-pVezZ

aug-mcc-pVTZ
aug-mcc—-pVQZ
aug-mcc-pV52
aug-mcc-pVez
aug-mecc-pViZ
aug-mcc-pVea

aug-pc-0
aug-pc-1
aug-pc-2

=

aug-pc-3

aug-pc—4

pc—0
pc-1
o

po-2
pe=3

L4992
.4912
L4995
.4802
.4998
.4999
L4971
.4942
.4998
.4823
.4998
.4999
.5000
.4994
.4788
.4933
.5000
.4933
.5000
.4995
.5000

.4993
L4903
.4998
.4880
L4999
.4952
.5000
L4773
.5000

.4998
L4999
.5000
.5000
.5000
.5000

.4964
.4986
.4999
.5000
.5000

. 4964
.4986
. 4999
. 5000

.1246
.1247
.1248
.1246
.1246
.1247

0.323%

0.1313

-0.
.1037
-0.

0554

1140

L2235
1313
. 0554
.1037

L2448
. 7874
.0633
.1878&
.2985
. 0155
L1742
Mg i)
.0993
L5145

0.2985

«1359
.0129
L0631
L7743
.3014
L0681l
.3080
.0250
.0008
.0460

L4362

0.3977
0.014z2
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Anexa II. Exemplu de cod Matlab-Octave pentru Wave-Function Theory (WFT) a atomului

sferic mediat cu baze GTO generalizate.

function etot=

hfmatlgtol (2, nbas, nocc, bas, cgto, cmol, ps, pp, pd, pf)

tO=cputime

nprim=length{bas(:,1));

ns=nbas {1) ;np=nbas (2) ;nd=nbas (3) ;nf=nbas (4) ;

nsocc=nocc (1) ;npocc=nocc (2) jndocc=nocc (3) ; nfocc=no

cc(d); nprims=0; nprimp=0; nprimd=0; nprimf=0;
for iprim=l:nprim

1shell=bas(iprim, 2);

if lshell==

nprims=nprims+1;

sbas (nprims, 1)=bas{iptim,1);

sbas (nprims, 2)=bas (iprim, 2);

sbas (nprims, 3)=bas (iprim, 3);

end

if 1lshell==

nprimp=nprimp+l;

pbas (nprimp, 1)=bas (iprim, 1);

pbas (nprimp, 2 )=bas (iprim, 2);

pbas (nprimp, 3)=bas (iprim, 3);

end

if lshell==2

nprimd=nprimd+l;

dbas (nprimd, 1)=bas (iprim, 1);

dbas (nprimd, 2 )=bas (iprim, 2) ;

dbas (nprimd, 3)=bas {iprim, 3);

end

if lshell==3

nprimf=nprimf+1;

fbas (nprimf, 1)=bas (iprim, 1);

fbhas (nprimf, 2 )=bas (iprim, 2);

fbas {nprimf, 3)=bas (iprim, 3) ;

end; end

cgtos=cgto (l:nprims,l:ns);

cgtop=cgto (nprims+l:nprimstoprimp, nst+l:ns+tnp)

cgtod=cgto (nprimst+nprimptl: nprims+tnprimptnprind,

ns+npt+l:ns+nptnd) ;

cgtof=cgto (nprims+nprimp+nprimd+l: nprims+nprimp+

nprimd+nprimf, ns+npt+nd+l: ns+np+nd+nf) ;

cmoOs=cmo0 ({1:ns, l:ns) ;

cmoOp=cmol (ns+1:ns+np, nst+l:ns+np) ;

cmo0d=cmol (ns+np+1: ns+np+nd, ns+np+1: ns+np+nd) ;

cmof0f=cmol (ns+np+nd+1: ns+np+nd+nf, ns+nptnd+l:ns+np

+nd+nf) ;

csl=cgtos*cmols; cpl=cgtop*cmolp;

cdl=cgtod*cmo0d; cfl=cgtof*cmoOf;

disp{'calcul hmatOs')

disp({cputime-t0)

if ns>0

for i=l:nprims

nl=sbas{i, 1) ;al=sbas{i, 3);

nrmgtos (i)=sqrt( (2" (3/2+nl)*al” (1/2+nl) ) /gamma (1/2

+nl) )y

end

for i=l:nprims for 4=1:i

nl=sbas (i, 1l);al=sbas(i, 3);

nZ2=sbas(j, 1) ;a2=sbas{3,3);

1=0;s=(gamma( (1/2)* (nl+n2+1) )/ (al+aZ) " {{1/2)* (nl+n

241 ) ) ) *

sgrt{{{(2*al)"(nl+1/2)*(2%*a2)"{n2+1/2) )/ (gamma (nl+1

/2)* gamma (n2+1/2)));

fh=(1/(2*{al+a2)"{({1/2)* (nl+n2+3))))*

sgrt{{(2*al)” (nl+1/2)* (2*a2)" {n2+1/2))

/ {gamma (nl+1/2) *gamma (n2+1/2)));

hkO={a2"2*{1+1*2+nl-nl"2})+al*a2*

(=1+2*1+2*%1"2+nl+n2+2*nl1*+n2)+a1 2% (1+1"2+n2-

272) y*gamma ( (1/2)* (-1+nl+n2));

v0=-2%Z* (al+a2)” ({3/2) *gamma { {(nl+n2) /2);

h=(hkO+v0)* fh;

hmatOs (i, j)=h;

hmatO=s(3,1)=h;

smatOs(i, j)=s;
smatOs(j,1i)=s;end; end

[csn, esn]=eig{hmatOs, smatOs) ;
csn=csn'; end
if np>0
for i=l:nprimp
nl=pbas{i, 1) ;al=pbas(i, 3);
nrmgtop {i)=sqgrt ({2 (3/2+nl)*al” (1/2+4+nl) } /gamma (1/
2+nl)); end
for i=l:nprimp; for 4=1:1
nl=pbas{i, 1) ;al=pbas(i, 3);
n2=pbas{j, 1) ;aZ=pbas(j, 3);
1=1;
s=({gamma { {1/2)* (nl+n2+1) )/ (al+a2)~{{(1/2)*
(n1+n2+1) ) ) *sqrt({((2*al)" (nl+1/2)* (2*a2)"
(n2+1/2) )/ (gamma (nl+1/2) *gamms (n2+1/2) ) ) ;
fh={(1/{2* (altaZ) " {{1/2)* {nl+n2+3))))*
sgrt(((2*al) ™ (nl+l/2)* (2*a2)™ (n2+1/2))/

(gamma (nl1+1/2) *gamma (n2+1/2) ) ) ;
hkO={a2"2* (1+1"2+nl-nl"2)+al*al2* (-
1+2*14+2*1 4 2+nl+n2+2*nl1*n2 ) +al " 2* (1+142+n2-n272) ) *
gamma ( (1/2)* (-1+nl+n2));
vO=—2%Z* (al+a2 )" (3/2) *gamma{ (nl+n2) /2);
h={hkO+wv0)* fh;
hmatOp (i, j)=h;
hmatOp (3, 1)=h;
end; end

[cpn, epn]=eig {hmatOp, smatOp) ;
cpn=cpn';
end
if nd>0
for i=l:nprimd
nl=dbas (i, 1) ;al=dbas(i,3);
nrmgtod(i)=sqrt ({2 (3/2+nl)*al” (1/2+nl))
fgamma{1/2+nl) ) ;
end

smatOp (i, j)=s;
smatOp(j,i)=s;

for i=l:nprimd
for j=1:1

nl=dbas{i, 1) ;al=dbas{i, 3);

n2=dbas{j, 1) ;a2=dbas(3,3);

1=2;

s={gamma { {1/2)* (nl+n2+1) )/ (al+a2)~{(1/2)

*(nl+n2+1) ) ) *sqgre(((2*al) " (nl+l1l/2)* (2*a2)

" (n2+1/2) )/ (gamma (nl+1/2) *gamma (n2+1/2) ) ) ;

fh=(1/ (2% (al+a2)” ((1/2)* (nl+n2+3))})

*aqri{{{2*al) " {nl+1/2)* {2*a2)" (n2+1/2))

/{gamma (nl+1/2) *gamma (n2+1/2)) ) ;

fh={1/(2* (al+aZ)™({1/2)* {nl+n2+3)) ) )+

sgrt({ {(2*al)” (nl+1/2)* {2*a2)™ (n2+1/2) )

/ {gamma (nl+1/2) *gamma (n2+1/2) ) ) ;

vO=—2*Z* (alta2) " (3/2) *gamma{ (nl+n2}) /2);

h=(hkO+w0)* fh;

hmatod{i, j}=h;

hmatOd(j,1i})=h;

smatOd (i, j)=s;
smatOd(j, 1) =9;

end

end

[cdn, edn]=eig(hmat0d, smatOd) ;
cdn=cdn"';

end

if nf>0

for i=l:nprimf
nl=fbas{i, 1) ;al=fbas(i, 3);
nrmgtof (i)=sqrt ({2°{3/2+nl)*al” (1/2+nl) ) /gamma {1/
2+nl)); end
for i=l:nprimf

for j=1:i
nl=fbas{i, 1) ;al=fbas{i, 3);
nZ=fbas{j, 1) ;a2=fbas(3,3); 1=3;
g=(gamma ( (1/2)}* (nl+n2+1) )}/ (al+a2)}"{(1/2)* (nl+n2+1
)
sgrt({{2*al) " (nl+1l/2)*{2*a2) " (n2+1/2)}/ {gamma (nl+
1/2) *gamma(n2+1/2)));
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fh=(1/(2* (al+a2) " ({(1/2)* {nl+n2+3) ) ) ) *sqgrt (((2*al)"
(nl+1/2)* (2%a2)* (n2+1/2) )/ (gamma (nl+1/2)
*gamma {(n2+1/2) ) };
hkO={a2"2* (1+1*2+nl-nl"2)+tal*al2* (-1+2*1+2*1
fE4Anl+An2+2*nlF*n2 ) +al"2* (1+172+n2-n2"2) )
*gamma { {1/2)* (-1+nl+n2));
v0=-2%Z* (al+a2)”™ (3/2) *gamma { (nl+n2) /2);
h= (hkO+v0)* fh;
hmatOf (i, j)=h; smato0fii,j)=s;
hmatOf(9,i)=h; smatOf{j,i)=s;
end; end
[cfn,efn]=eig{hmatOf, smatOf);
cfn=cfn';
end
csn=csl'; cpn=cpl';cdn=cdl"';cfn=cfl';
if ns>0
hmatsn=csn*hmatOs*csn';
end
if np>0
hmatpn=cpn*hmatOp*cpn';
end
if nd»0
hmatdn=cdn*hmatOd*cdn' ;
end
if nf>0
hmatfn=cfn*hmatOf*cfn';
endfor i=l:ns
hs({i)=hmatsn{i,i);
end
for i=l:np
hp(i)=hmatpn (i, i);
end
for i=l:nd
hd(i)=hmatdn(i,i);
end
for i=l:nf
hf (i)=hmatfn{i,i);
end
if ns>0 & np>0
rOfsp=r0fgtol (sbas, pbas) ;
rkgsp=rkggtol (sbas, pbas) ;
Jshsp=rkgsp{l:nprims, l:nprimp, l:nprims, 1:nprimp, 1)/
A2
End
if ns>0 & nd>0
rOfsd=r0Ofgtol (sbas, dbas);
rkgsd=rkggtol {sbas, dbas);
Jshsd=rkgsd(l:nprims, l:nprimd, l:nprims, 1:nprimd, 1)/
5;
end

if ns>0 & nf>0

rOfsf=r0fgtol (sbas, fbas) ;

rkgsf=rkggtol {sbas, fbas);
Jshsf=rkgsf(l:nprims, l:nprimf, l:nprims, 1:nprimf, 1)/
.y

end

if np>0 & nd>0
rOfpd=rOfgtol (pbas, dbas) ;
rkgpd=rkggtol (pbas, dbas) ;

Jshpd = (2/15)*rkgpd{:,:,:i,:,1)+
{3/35) *rkgpdls ey E) g

end

if np>0 & nf>0
rOfpf=r0fgtol (pbas, fbas) ;
rkgpf=rkggtol {pbas, fbas);

dshpf = (3/35)*rkopfie, i, 1)+
(4/63) *rkgpfi{z, t,z:,:,2);
end

if nd>0 & nf>0
rOfdf=r0fgtol (dbas, fbas);
rkgdf=rkggtol (dbas, fbas);

Jdshdf = (3/35)*rkgdf(:,z,:2,:,1)+
{4/108)*rkagdf (vt 0:2)
+ (10/231)*rkgdf{:,:,z2,:,3);
end
if ns>0
t0fss=r0fgtol (sbas, sbas);
rkgss=rkggtol (sbas, sbas) ;
JshslsZ=rkgss(:i,:,:,:,1);
end
if np>0
rO0fpp=r0fgtol (pbas, pbas) ;
rkgpp=rkggtol (pbas, pbas};
Jshplp2= rkgpp(:,:,:,:,1)/3 +
praiadldn | m) < 7 (5P SPRE Siou ARy 1 BT
JIshpp=(1/5)*rkgpp{:,t,:,:,2) ;
end
if nd»0
r0fdd=r0fgtol (dbas, dbas);
rkgdd=rkggtol (dbas, dbas) ;
Jshdld2=rkgdd(:t,:,:,:,1}/5 +
24rkgdd{:,z,2,:,2)/35
+ 2xrlagdd (s, i .8, 3)/38;
Jshdd = (1/14)*rkgdd(:,:,:,:,2)+
(1/14)y*rkgdd(:, ;2,4 3)
end
1 I el 1
r0fff=r0fgtol ( fbas, fbas);
rkgff=rkggtol | fbas, fbas);
Jahfl1fi= rkgff{z,:t,:,:,10/7 +
d*rkgff{:,:,:,:,2)/105
+ 2FERGET (e, b b s BT F
100*rkgff{e, 1, t,:,4) /3003,
Jshff = (2/45)*rkgff{i,i,2,:,2) +
Bt ol i RGO O
+ (50/12BT ) ErkgEE (bt et d)
end
disp('calcul FOsp')
disp{cputime-t0)
if ns>0 & np>0
FaOsp=zeros(nprims, nprims, np) ;
FpOsp=zeros(nprimp, nprimp, ns);

for kl=l:nprims

for ll=l:nprims

for kZ=l:nprimp

for 12=l:nprimp

for j=l:np

s0sp(kl, 11, 3)=FsOsp(kl, 11, j)+cpn(j, k2) *cpnij, 12
)

*r0fsp(kl,11,k2,12);

end

for i=l:ns
FpOsp(k2,12,i)=FpOsp(k2,12,i)+csn({i, kl)*con(i, 1
1)

*rO0fsp(kl,11,k2,12);

end; end; end; end; end;
disp('calcul Gksp')
disp{cputime-t0)
Js sp=zeros(nprims, nprims, np);
Jp sp=zeros(nprimp, nprimp, ns);

for kl=l:nprims

for k2=l:nprims

for ll=l:nprimp

for 12=1l:nprimp
for 9=l:np
Js sp(kl, kZ,j)=0s sp(kl, kZ,j)+ecpn(], 11)
*cpn{j,l2)*Jshsp(kl, 11,k2,12);
end
for i=l:ns
Jp_sp(ll,12,i)=dp sp(l11,12,i)+can(i, kl)
*ecan({i, k2)*Jdshsp(kl, 11, k2,12);
end; end; end; end; end; end
disp('calcul FOsd')
disp(cputime-t0)
if ns>0 & nd>0
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Falsd=zeros (nprims, nprims, nd);
FdOsd=zeros (nprimd, nprimd, ns);

for kl=l:nprims

for kZ=l:nprimd

for ll=l:nprims

for 12=l:nprimd
for j=1l:nd
Fs0sd{k1,11,§)=Fs0sd{kl,11,j)+ecdn(j, k2)*ecdn{]j, 1
2)
*r0fsd(kl,11,k2,12);
end
for i=l:ns
FdOsd{k2,12,i)=Fd0sd(k2,12,i)+ecsn({i, kl)*ecan{i, 1
1)
sr0fad (el , 11, k2, 12) ¢
end; end; end; end;
disp{'calcul Gksd')
disp(cputime-t0)
Js sd=zeros{nprims, nprims, nd);
Jd:sd=zeros[nprimd,nprimd,ns};

end;

for kl=l:nprims
for kZ=l:nprims
for 1l1=l:nprimd
for 12=l:nprimd
for j=l:nd
Js_sd(kl, kZ,j)=Js sd(kl,kZ2,]j)+cdn(j,11)*
cdni{j,12)*Jshsd{kl, 11, k2,12);
end
for i=l:ns
Jd sd(11,12,1i)=dd =sd(11,12,i)+csn(di, kl)
*can{i, k2)*Jshsd(kl, 11, k2,12);
end; end; end; end; end; end
disp('calcul FOsf')
disp{cputime-t0)
if ns>0 & nf>0
FsOsf=zeros (nprims, nprims, nf);
FfOsf=zeros (nprimf, nprimf, ns);
for kl=l:nprims
for kZ2=l:nprimf
for 1ll=l:nprims
for 12=l:nprimf
for j=1:nf
Fs0sf (kl,11,3)=Fs0sf(k1l,11,3)+ctn{]j, k2)
*ofn(3,12)*r0fsf{k1,11,%k2,12);
end
for i=l:ns
FfOsf(k2,12,1i)=FfOsf(k2,12,1i)+csn({i, k1)
*csn{i,ll)*r0fsf(kl,11,k2,12);
end; end; end; end; end
disp('calcul Gksf')
disp{cputime-t0)
Js_sf=zeros(nprims, nprims, nf);
Jf sf=zeros(nprimf, nprimf, ns);
for ki=l:nprims
for kiZ=l:inprims
for 1ll=l:nprimf
for 12=l:nprimf
for j=l:nf
Js sf(kl,k2,3)=ds sf(kl, kZ,j)+cfn(j,11)
*cfn(j,12)*JIshaf(kl,11,k2,12);
end
for i=l:ns
Jf s£(11,12,i)=Jf sf(11,12,i)+can(i, kl)
*csn{i,k2)*JIshsf(kl,11,%k2,12);
End; end ; end; end; end; end
disp('calcul FOpd')
disp{cputime-t0)
if np>0 & nd>0
FpOpd=zeros (nprimp, nprimp, nd) ;
FdOpd=zeros (nprimd, nprimd, np) ;
for kl=l:nprimp
for kZ2=l:nprimd
for 1ll=l:nprimp
for 12=l:nprimd

for j=1:nd
FpOpd{k1,11, §)=FpOpd{kl,11,j)+ecdn(j, k2)*
cdn(y,12) *r0fpd(kl,11,k2,12)
end
for i=l:np
FdOpd({k2,12,i)=FdOopd(kZ,12,i)+cpn{i, kl)*cpn(i, 1
Ly *+Qfpd{kl;11,%k2,12)
end; end; end; end; end
disp({'calcul Gkpd')
disp({cputime-t0)
Jp pd=zeros (nprimp, nprimp,nd);
Jd:pd=zeros[nprimd,nprimd,np};
for kl=l:nprimp
for kZ2=1:nprimp
for 11=1:nprimd
for 1Z2=l:nprimd
for j=l:nd
Jp pd{kl, k2, j)=Jdp_pd({kl, k2,j)tcdn(j,11)*cdn(],1
2) *Jshpd{kl,11,%k2,12);
end
for i=l:np
J pd(11,12,i)=Jd pd(11,12,i)+cpn(i, kl)*cpn(i, k2
) *Jshpd(kl,11,k2,12);
end; end; end; end;
disp('calcul FOpf')
disp(cputime-t0)
if np>0 & nf>0
FpOpf=zercs (nprimp, nprimp, nf) ;
FfOpf=zeros (nprimf, nprimf, np) ;
for kl=l:nprimp
for kZ2=1:nprimf
for ll=l:nprimp
for 12=l:nprimf
for j=l:nf
Fplptf (k1,11, j)=Fplpf(kl,11,j)+cfn(j, k2)*
cfn(y,12)*r0fpf(kl, 11,k2,12);
end
for i=l:np
Ffopf (k2,12,i)=FfOopf(k2,12,i)+cpn(i, kl)*cpn(i,1
1)
*eOEpE [l 11 P T2 )y
end; end; end; end; end
disp('calcul Gkpf')
disp({cputime-t0)
Jp pf=zeros(nprimp, nprimp, nf);
Jf pf=zeros(nprimf, nprimf, np) ;
for kl=l:nprimp
for kZ2=1l:nprimp
for 1ll=l:nprimf
for 12=l:nprimf
for j=1l:nf
Jp_pfikl, k2,])=dp_pf(kl, kZ,3)+cfn(3,11)

end; end

*cfn(q,12) *Jshpf({kl,11,kz,12);
end
for i=l:np

Jf pf(l11,12,i)=Jdf pf(11,12,i)+cpn(i, kl)
*epni{i, k2) *Jshpf(kl,11,k2,12);
end; end; end; end; end; end
disp{'calcul FOdf')
disp({cputime-t0)
if nd>0 & nf>»0
FdOdf=zerocs (nprimd, nprimd, nf);
FfOdf=zercs (nprimf, nprimf, nd) ;

for kl=1:nprimd

for kZ2=l:nprimf

for 1ll=l:nprimd

for 12=1:nprimf
for j=l:nf
FAdOdf { k1,11, j)=Fdodf {k1,11, j)+cfn(j, k2)
*ofn(y, 12)*r0fdf (kl,11,%2,12);
end

for i=l:nd

Ffodf(kz,12,1i)=Ff0df(k2,12,i)+cdn(i, k1)
*edn(i,11)*rO0fdf{kl, 11,k2,12);
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end; end; end; end; end
disp('calcul Gkdf') disp{cputime-t0)
Jd df=zeros(nprimd, nprimd, nf) ;
Jf df=zeros{nprimf, nprimf, nd);
for kl=l:nprimd
for k2=l:nprimd
for 1l=l:nprimf
for 12=l:nprimf
for j=1l:nf
Jd df {kl,k2,§)=Jdd df (k1,k2,9)+cfn(],11)
*cfn(y,12)*JIshdf (k1,11,%k2,12);
end
for i=l:nd
JE df(11,12,4)=Jf Af(11,12,i)+cdn(i, k1)
*odn{i, k2)*JIshdf (k1,6 11,k2,12);
end; end; end; end; end; end
disp{'calcul FOsls2')
disp(cputime-t0)
if ns>0
FsOsls2=zeros (nprims, nprims,ns);
for kl=l:nprims
for k2=l:nprims
for 1l=l:nprims
for 12=l:nprims
for j=l:ns
Fa0sls2(kl,11,9)=Fs0s1s2{kl,11,93)+tecan{], k2)
*esn{j,12)*r0fss (k1,11, k2;12);
end; end; end; end; end
disp('calcul Gksls2')
disp({cputime-t0)
Js slsZ=zeros(nprims, nprims,ns);
for kl=l:nprims
for k2=l:nprims
for 1ll=l:nprims
for 12=l:nprims
for j=l:ns
Js s1sZ(kl,k2,3)=0s s1s2(kl,k2,j)+can{j,11)
*esn{j,l2)*JIshsls2 (k1,11,k2,12);
end; end; end; end; end
disp('calcul FOss')
disp{cputime-t0)
FsOss=zeros (nprims, nprims, ns);
for kl=l:nprims
for kZ=l:nprims
for 1l=l:nprims
for 12=l:nprims
for i=l:ns
Fs0ss(kl,11,1i)=Fs0s=s(kl,11,i)+ecsn{i, k2)*csn(i, 1
2) *r0fss{kl,11,%k2,12);
end; end; end; end;
disp('calcul FOplp2')
disp({cputime-t0)
if np>0
Fplplp2=zeros (nprimp, nprimp, np);
for kl=l:nprimp
for kiZ=l:nprimp
for 1ll=l:nprimp
for 12=l:nprimp
for j=l:np
FpOplp2(kl,11,59)= FpOplpZ(kl,11,j)+cpn(j, k2)
*epn(3, 12)*r0fpp k1,11, k2, 12) ¢
end; end; end; end; end
disp('calcul Gkplp2')
disp{cputime-t0)
Jp_plpl=zeros(nprimp, nprimp, np};
for kl=l:nprimp
for kZ=l:nprimp
for ll=l:nprimp
for 12=l:nprimp
for j=l:np
Jp plpZ (kl,k2,3)=Jdp plp2(kl, k2,]j)+tcpn(], 11)*
epn(d, 12)y*Ishplp2 (ki,11,k2,12);
end; end; end; end; end
disp('calcul FCpp')
disp({cputime-t0)

end; end

Jp_pp=zeros(nprimp, nprimp, np) ;
for kl=l:nprimp
for kZ=1l:nprimp
for 1l=1:nprimp
for 12=1:nprimp
for i=l:np
Jp_pp(kl, k2,i)=Jp pp(kl, k2,1i)+cpn{i, 11)*
cpn{i, l2)*JIshpp(kl, 11,k2,12);
end; end; end; end; end; end
disp{'calcul FOdld2')
disp {cputime-t0)
if nd>0
FdOdldZ=zeros (nprimd, nprimd, nd) ;
for kl=1:nprimd
for kZ=l:nprimd
for 1ll=l:nprimd
for 12=1:nprimd
for j=l:nd
Fd0odld2 {k1, 11, 3)=Fd0d1d2 {k1,11, j)+cdn(]j, k2)
*cdn{j,1l2)*r0fdd k1,11, k2,12);
end; end; end; end; end
disp('calcul Gkdld2')
disp{cputime-t0)
Jd dldZ=zeros({nprimd, nprimd, nd);
for kl=1:nprimd
for kZ2=1l:nprimd
for 1ll=l:nprimd
for 12=1:nprimd
for j=l:nd
Jd di1d2 {k1, k2, j)=dd d41d2(k1, kZ,3)+cdn(j,11)
*cdn(§,12) *Jshdld? (k1,11,k2,12);
end; end; end; end; end
disp({'calcul FOdd')
disp{cputime-t0)
FdOdd=zeros (nprimd, nprimd, nd} ;
for kl=l:nprimd
for kZ2=1:nprimd
for ll=l:nprimd
for 12=1:nprimd
for i=l:nd
FcdOdd{kl,11,1i)=Fd0dd k1,11, i)+cdn{i, k2)
*cdn(i,l2)*r0fdd(k1,11,k2,12);
end; end; end; end; end
disp('calcul Gkdd')
disp{cputime-t0)
Jd dd=zeros(nprimd, nprimd, nd) ;
for kl=1l:nprimd
for k2=1:nprimd
for 1ll=1l:nprimd
for 12=1:nprimd
for i=l:nd
Jd_dd(kl,k2,i)=Jd dd{kl, k2,i})+edn(i,11)
*odn{i,12)*Jshdd k1,11, k2,12);
end; end; end; end; end; end
disp{'calcul FOf1f2')
disp(cputime-t0)
if nf>0
FfOflf2=zeros (nprimf, nprimf, nf);
for kl=l:nprimf
for kZ2=l:nprimf
for 1ll=l:nprimf
for 12=1:nprimf
for j=l:nf
FfOf1f2(kl,11,4)=Ff0f1£2(k1,11,3)+cfn(j, k2)
gt e o i e WS o2 ] e o o i D9 o2 8 0 1
end; end; end; end; end
disp('calcul Gkflf2'); disp{cputime-t0)
Jf flfZ=zeros(nprimf, nprimf, nf);
for kl=l:nprimf
for kZ=1l:nprimf
for ll=l:nprimf
for 12=1:nprimf
for j=1:nf
Jf f1£2(kl,k2,5)=Jf f1£f2(kl,k2,3)+cfn(j,11)
*ofn(j),12)*JIshf1£f2(k1,11,k2,12);
end; end; end; end; end
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disp('calcul FOff')
disp{cputime-t0)
FfOff=zeros(nprimf, nprimf, nf);
for i=1l:nf
for kl=l:nprimf
for k2=l:nprimf
for 1l=l:nprimf
for 12=l:nprimf
FfOoff(k1,11,1i)=FfOff(kl,11,i)+cfn(i, k2)
*ofn(1,12) *rkgff (k] 11, kZ-19)
end; end; end; end; end
disp('calcul GKEff"')
disp({cputime-t0)
Jf ff=zeros(nprimf, nprimf, nf);
for kl=l:nprimf
for kiZ=l:nprimf
for 1ll=l:nprimf
for 12=l:nprimf
for i=l:nf
Jf £ff(kl,k2,i)=0f £f({kl,k2,i)+cfn(di,11)
*cfn{i, 12)*Ishff({kl,11,k2,12);
end; end; end; end; end; end
disp('calcul 38')
disp{cputime-t0)
for i=l:nsocc
if ps{i)«l.0
Ss{i)=ps(i)/2;
else
Ss{i)=1l-(ps{i))/2;
end; end
for i=l:npocc
if pp(i)<3.0
Spi{i)=ppli)/2;
else
Sp({i)=3-(ppl{i))/2 ;
end
end
for i=l:ndocc
if pd(i)<5.0
s8d{i)=pd{i)/2;
else
Sd(i)=5—-({pd{i)) /2 ;
end
end
for i=l:nfocc
if pE{i)<7.0
Sf(i)=pf(i)/2:
else
sf{i)=T-(pE(i)})/2 ;
end; end
for i=nsoccctl:ns
ps{i)=0; 8=s(1i)=0;
end
for i=npocctl:np
ppii)=0; Sp(i)=0;
end
for i=ndocct+l:nd
pd(i)=0; sd(i)=0;
end
for i=nfocc+l:nf
pf(i)=0; s8f(i)=0;
end
disp('calcul E')
disp{cputime-t0)
Ps PP pd
Ss Sp s8d

fmatsn=zeros(ns, ns);
fmatpn=zeros (np, np

)
)
fmatdn=zeros (nd, nd)
)
=

;

fmatfn=zeros (nf,nf);
fmatsnl=zeros(ns,ns);
fmatpnl=zeros(np, np) ;
fmatdnl=zero=s (nd, nd) ;
fmatfnl=zeros (nf,nf)
Es=0;

for i=l:nsocc

i
i

addl=csn(i, :)*Fs0Oss(:,:,i)*csn(i,:)"';
fmatsn(i,i)=fmatsn{i,i)+(ps({i)-1)*addl;
Es=Est+ps{i)*hs{i)+ps{i)*fmatsn({i, i);

end

hls=hmatsn(l,1);

h2s=hmatsn{2,2);

FOls=csan{l,:)*Fs0ss(:,:,1)*esn(l,:

FOZ2a=can(2,: )*Fas0as(:,:,2)*¢csn(2,:

Ep=0;

for i=l:npocc
addl=cpn{i,: ) *Fplpp(:,:,i)*cpn(i,:)"';
addZ=cpn({i,:)*Jp pp(:,:,i)*cpn(i,:)"';

fmatpn(i, i)=fmatpn{i,i)+({pp(i)-1)*addl-{(1/16)*

(10*pp (1)-19)*addz;

fmatpnl (i,i)=fmatpnl (i, i)-

[3/16)* {4*Sp(i)+1) *add?2;
Ep=Eptpp({i)*hp(i)+pp(i)*fmatpn(i, i)+Sp(i)
*fmatpnl (i, i),

end

hZp=hmatpn(l,1});

FOZp=addl{l,1);

J2p=add2(1,1);

Ed=0;

for i=l:ndocc
addl=cdn{i,: ) *Fd0dd(:,:,i)*cdn(i, :)";
addZ=cdn({i, :)*Jd dd(:,:,i)*edn(i,:)";
fmatdn(i,i)=fomatdn{i,i)+2* (1/2)* (pd{i)-1)*
addl-2* {1/24)* (T*pd{i)-22)*add2;
fmatdnl (i, i)=fmatdnl(i,i)-

2*(5/6)* (8d{i)+1)*add2;
Ed=Ed+pd{i)*hd{i)+pd{i)*fmatdn{i, i)+8d{1i)
*fmatdnl (i,1);;

end

Ef=0;

for i=l:nfocc
addl=cfn{i, t )*FfOff{s, ¢, 1) *ofn(i, ) "
add2=cfn{i,:)*Jf £f(:,:,i)*efn(i,:)";
fmatfn(i, i)=fmatfn(i,i)+2*(1/2)* (pf(i)-1)
*add1-2*(1/32)* (9*pf (1) -30) *add2;
fmatfnl (i, i)=fmatfnl (i, i)-

2% (7/8)* (S (i)+1) *add2;
Ef=Ef+pf(i)*hf(i)+pf(i)*fmatfn(i, i)+8£({i)
*fmatfnl (i, 1) ;;

end

Esp=0;

if nprims>0

for i=l:npocc
addl=csn*Fs0sp(:,:,1)*csn';
add2=csn*Js sp(:,:,1i)*csn';
fmatsn=fmatsntpp (i) *addl-(1/2) *pp(i)*add2;
fmatsnl=fmatsnl-2*sSp (i) *add2;

for j=l:ns; Esp=Esp+ ps(j)* (ppli)*addl(3,3)-
{1/2)

*pp(i)*add2 (3, 3)); end

end; end

FOls2p=addl(1,1);

JlsZp=add2(1,1);

FO2s2p=addl (2, 2);

JZ2s2p=addz (2, 2);

if nprimp>0

for i=l:nsocc
addl=cpn*FpOsp{:,:,1)*cpn';
addZ=cpn*Jp _sp(:,:,1i)*cpn';
fmatpn=fmatpntps (i)*addl-(1/2)*ps{i)*add2;
fmatpnl=fmatpnl-2*Ss(i)*add?2;
for j=linp; Esp=Esp+ pp(3)* (ps(i)*addl(3,9)-
{1/2)

*ps{i)*add2(j,3)); end

end; end

if nprims>0

for i=l:ndocc
addl=csn*Fs0sd(:,:,1)*csn';
addZ=csn*Js sd(:,:,i)*csn';
fmatsn=fmatsntpd (i) *addl—{1/2)*pd{i) *add2;
foatsnl=fmatsnl-2*8d (i) *add?2;

end; end
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if nprimd=0

for i=l:nsccc

addl=cdn*Fd0sd{:,:,i)*cdn';

add2=cdn*Jd sd(:,:,i)*cdn';
fmatdn=fmatdn+ps (i) *addl-(1/2)*ps(i)*add2;
fmatdnl=fmatdnl-2*8={i)*add2;

end; end

if nprims>0

for i=l:nfocc

addl=csn*Fs0sf{:,:,i)*csn';

add2=can*Js sf(:,:,i)*can';
fmatsn=fmatsntpf (i) *addl-(1/2)*pf(i)*add2;
fmatsnl=fmatsnl-2*sSf(i)*add2;

end; end

if nprimf>0

for i=l:nsocc

addl=cfn*FfOsf(:,:,1i)*ctn';

add2=cfn*Jf sf(:,:,i)*cfn';
fmatfn=fmatfnt+tps(i)*addl-(1/2)*ps(i)*add2;
fmatfnl=fmatfnl-2*8s({i)*add2;

end; end

if nprimp>0

for i=l:ndocc

addl=cpn*FpOpd{:,:,i)*cpn';

add2=cpn*Jp pd(:,:,i)*cpn';
fmatpn=fmatpnt+pd (i) *addl-(1/2)*pd(i)*add2;
fmatpnl=fmatpnl-2*8d{i)*add2;

end; end

if nprimd>0

for i=1l:npocc

addl=cdn*Fd0pd{:,:,i)*cdn';

add2=cdn*Jd pd(:,:,1i)*cdn';
fmatdn=fmatdntpp (i) *addl-(1/2)*pp (i) *add?2;
fmatdnl=fmatdnl-2+Sp(i) *add2;

end; end

if nprimp>0

for i=l:nfocc

addl=cpn*FpOpf(:,:,1)*cpn';

add2=cpn*Jp pf(:,:,i)*cpn';
fmatpn=fmatprn+pf (i) *addl-{1/2) *pf (i) *add2;
fmatpnl=fmatpnl-2+*Sf (i) *add2;

end; end

if nprimf>0

for i=l:npocc

addl=cfn*FfOpf(:,:,1)*ctn';

add2=cfn*Jf pf{:,:,i)*cfn';
fmatfn=fmatfnt+pp(i)*addl-{1/2)*pp (i) *add2;
fmatfnl=Ffmatfnl-2+8p (i) *add2;

end; end

if nprimd>0

for i=l:nfocc

addl=cdn*Fd0df(:,:,1i)*edn';

add2=cdn*Jd df(:,:,i)*cdn';
fmatdn=fmatdn+pf (i) *addl-{1/2)*pf (i) *add2;
fmatdnl=fmatdnl-2*3f (i) *add2;

end; end

if nprimf>0

for i=l:ndocc

addl=cfn*Ff0df(:,:,1)*cfn';

add?2=cfn*Jf df{:,:,i)*cfn';
fmatfn=fmatfnt+pd (i) *addl-{1/2)*pd(i)*add2;
fmatfnl=fmatfnl-2*3d{i)*add2;

end; end

Esls2=0;

if nprims>0

for i=l:nsocc

addl=csn*Fs0s1s2(:,:,1i)*csn';
addZ=csn*Js_sl1s2(:,:,1)*esn';

addl(i,i)=0; add2(i,i)=0;
fmatsn=fmatsntps (i) *addl-{1/2) *pa (i) *add2;
fmatsnl=fmatsnl-2*Ss(i)*add2;

for j=1l:ns; Eslsi=Esls2+

ps(3)*(ps(i)*addl (], 3)

—{1/2)*ps(i)*add2(3,3)); end
end; end
FOls2s=addl(1,1);

JlsZs=add2(1,1);
Eplp2=0;
if nprimp>0
for i=l:npocc
addl=cpn*FpOplp2 (:, :,1) *cpn';
addZ=cpn*Jp plp2(:,:,i)*cpn';
addl (i, i)=0; add2(i,i)=0;
frnatpn=fmatpntpp (i) *addl-(1/2) *pp (i) *add2;
fomatpnl=fmatpnl-2*sSp(i)*add2;
for j=l:np; EplpZ=Eplp2+ pp(i}*(pp(i)*
addl (3,3)-(1/2)*pp(i)*add2(j,j)); end
end; end
if nprimd=0
for i=l:ndocc
addl=cdn*Fd0d1d2 (:,:,1i)*cdn';
add2=cdn*Jd dld2(:,:,1i)*cdn';
addl (i, i)=0; addZ2(i,i)=0;
fmatdn=fmatdnt+pd (i) *addl-(1/2)*pd(i)*add2;
fmatdnl=fmatdnl-2*3d (i) *addZ2;
end; end
if nprimf>0
for i=l:nfocc
addl=cfn*FfOf1£2(:,:,1i)*cfn';
add2=cfn*Jf f1f2(:,:,i)*ctn';
addl (i,1i)=0; addZ2(i,i)=0;
fmat fn=fmatfnt+tpf (i) *addi-(1/2)*pf(i)*add2;
fmatfnl=fmatfnl-2+*3f (i) *add2;
end; end
if ns>0
fmatsn=hmatsn+fmatsn;
end
if np>0
fonatpn=hmatpntfmatpn;
end
if nd>0
fmatdn=hmatdn+fmatdn;
end
if nf>0
fmatfn=hmat fn+fmatfn;
end
Etot=0;
for i=l:nsocc
Etot=Etot+0.5*ps(i)* (hmatsn{i,i)+fmatsn{i,i))
+0.5*8s (i) *fmatsnl (i,1);
end
for i=l:npocc
Etot=Etot+0.5*pp(i)* (hmatpn (i, i)+fmatpn(i, i))
+0.5*8p (i) *fmatpnl (i, i);
end
for i=l:ndocc
Etot=Etot+0.5*pd(i)* (hmatdn (i, i)+fmatdn{i,i))
+0.5*8d{i)*fmatdnl {i,1);
end
for i=l:nfocc
Etot=Etot+0.5*pf(i)* (hmatfn(i, i)+fmatfn{i,i))
+0.5*8f{i)*fmatfnl (i,4);;
end
Etot
disp({'final"')
disp({cputime-t0)
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