ACADEMIA ROMÂNĂ INSTITUTUL DE CHIMIE FIZICĂ "ILIE MURGULESCU"

Adriana BORCEA (căs. RUSU)

REZUMATUL TEZEI DE DOCTORAT

STUDII STRUCTURALE PRIN METODE SPECTROSCOPICE ALE SISTEMELOR OXIDICE NANOSTRUCTURATE

Conducător științific, Acad. Dr. Maria Magdalena ZAHARESCU

1. Laharene

Bucuresti, 2017

CUPRINS

1	INTR	ODUCI	DDUCERE 1					
2	DAT	e de li	DE LITERATURĂ 3					
	2.1	CONS	IDERAŢI	II GENERALE PRIVIND METODELE	3			
		SPECT	FROSCO	PICE				
		2.2.1.8	PECTRO	SPOPIA ÎN INFRAROȘU	4			
		2.2.2.8	PECTRO	SCOPIE DE ABSORBȚIE ÎN UV-VIS	7			
		2.2.3.8	PECROS	COPIA DE FLUORESCENȚĂ	8			
		2.2.4.8	PECTRO	CTROSCOPIA RAMAN				
		2.2.5.	SPECTRO	ECTROSCOPIA FOTOELECTRONICĂ DE RAZE X				
		2.2.6.F	REZONAI	NȚA MAGNETICĂ NUCLEARĂ	10			
	2.2.	CARA	CTERIZA	AREA STRUCTURALA A	11			
	2.3.	NANC BIBLI)MATER. OGRAFII	IALELOR OBTINUTE PRIN METODA SOL-GEL E Cap.2	16			
3	CON	TRIBUT	II ORIGINALE					
	3.1.	OBIEC	CTIVELE	TIVELE TEZEI				
	3.2.	METC	DE DE II	NVESTIGATIE UTILIZATE	20			
	3.3.	SISTE	ME OXII	DICE STUDIATE	21			
		3.3.1.	PULBEI	RI OXIDICE ÎN SISTEMELE SiO2-TiO2 și	21			
			SiO ₂ -Ti	D ₂ -Al ₂ O ₃				
			3.3.1.1	Prepararea probelor	22			
			3.3.1.2	Geluri rezultate din sinteză	23			
			3.3.1.3.	Pulberi tratate termic	28			
			3.3.1.4	Concluzii Cap.3.3.1.	34			
			3.3.1.5	Bibliografie Cap.3.3.1	35			
		3.3.2.	PULBE	RI OXIDICE ÎN SISTEMUL TiO2-MgO	37			
			3.3.2.1.	Prepararea probelor	38			
			3.3.2.2.	Pulberi rezultate prin sinteză	38			
			3.3.2.3	Pulberi tratate termic	43			

		3.3.2.4.	Concluzii Cap.3.3.2.	47
		3.3.2.5.	Bibliografie Cap.3.3.2.	47
	3.3.3.	PULBEI	RI OXIDICE ÎN SISTEMUL Al ₂ O ₃ -TiO ₂	50
		3.3.3.1.	Prepararea probelor	51
		3.3.3.2.	Pulberi rezultate prin sinteză	51
		3.3.3.3.	Pulberi tratate termic	53
		3.3.3.4.	Concluzii Cap. 3.3.3.	57
		3.3.3.5.	Bibliografie Cap.3.3.3.	58
	3.3.4.	PULBE	RI OXIDICE ÎN SISTEMUL Al ₂ O ₃ -NiO	61
		3.3.4.1.	Prepararea probelor	62
		3.3.4.2	Pulberi tratate termic	62
		3.3.4.3.	Concluzii Cap. 3.3.4.	69
		3.3.4.4.	Bibliografie Cap.3.3.4.	70
	3.3.5.	PULBEI	RI OXIDICE ÎN SISTEMUL V2O5-CeO2	73
		3.3.5.1.	Prepararea probelor	74
		3.3.5.2.	Pulberi rezultate din sinteză	74
		3.3.5.3	Pulberi tratate termic	78
		3.3.5.4.	Concluzii Cap. 3.3.5.	82
		3.3.5.5.	Bibliografie Cap.3.3.5.	82
	3.3.6	PULBER COMPU	RI OXIDICE ÎN SISTEME COMPOZITE SILICE- SI ORGANICI (CICLODEXTRINE SI PESTICIDE) Considerații generale	86 86
		3.3.6.2.	Prepararea probelor	87
		3.3.6.3	Nanocompozite sintetizate	88
		3.3.6.6.	Concluzii Cap.3.3.6.	101
		3.3.6.7.	Bibliografie Cap.3.3.6.	101
4.	CONCLUZII	GENERA	ALE	106
5	ANEXE			109
-				- • /

1. INTRODUCERE

Termenul nano se referă la dimensiuni de ordinul 10^{-9} m, nanomaterialele desemnând acele materiale care au cel puțin o dimensiune de ordin nanometric (1 – 100 nm).

Conform lui Siegel, citat de [1], nanomaterialele pot fi împărțite în zerodimensionale, unidimensionale, bidimensionale și tridimensionale. Nanostructurile zerodimensionale sau nanoparticulele pot fi obținute într-o mare varietate de morfologii și includ particulele monocristaline, policristaline sau amorfe; nanomaterialele unidimensionale se pot prezenta sub formă de nanofire, nanofibre, nanocabluri și nanotuburi, iar nanostructurile bidimensionale sunt reprezentate de filme. Nanostructurile 3D se referă la materiale bloc.

Din categoria materialelor nanostructurate, oxizii metalici, datorită proprietăților lor unice precum cele chimice, termice, electrice, optice, mecanice, magnetice și morfologice (suprafața specifică mare), au aplicații în microelectronică, cataliză, industria ceramică, stocarea energiei, tratarea apei, în tehnologia medicală, depoluarea mediului și pentru produse de îngrijire personală, fiind folosiți în domenii foarte variate [2, 3].

Cele mai folosite metode pentru sinteza nanomaterialelor oxidice sunt cele în fază lichidă, precum: metoda sol-gel, metoda precipitării/coprecipitării, metoda microemulsiilor, metoda sonochimică, metoda hidrotermală/solvotermală, sinteza în câmp de microunde, sinteza electrochimică, sinteza cu şablon (template), etc.

Sinteza în fază lichidă prezintă o serie de avantaje: temperatură scăzută de obținere, amestecarea omogenă a precursorilor la scară moleculară cu obținere de materiale metastabile, proiectarea și controlul proprietăților fizico-chimice ale nanomaterialelor oxidice finale (dimensiunea particulelor, forma acestora, proprietățile suprafeței), în funcție de precursorii utilizați. Cu toate acestea, există și câteva dezavantaje, printre care faptul că necesită precursori scumpi și timpi de sinteză mari.

În cadrul tezei se vor prezenta cercetări privind prepararea unor sisteme oxidice mono și policomponente ca și a unor nanocompozite prin metoda sol-gel și caracterizarea prin metode specroscopice a probelor sintetizate.

2. CONTRIBUȚII ORIGINALE

2.1. OBIECTIVELE TEZEI

Obiectivul principal al tezei de doctorat îl reprezintă caracterizarea prin metode spectroscopice a sistemelor oxidice nanostructurate obținute prin metode chimice, în special prin metoda sol-gel.

Datorită faptului că prin utilizarea metodei sol-gel se obțin în prima fază materiale amorfe, caracterizarea structurală a acestora poate fi făcută, în această fază, în principal prin metode spectroscopice.

Dintre metodele spectroscopice de caracterizare s-a utilizat, în special, spectroscopia în infraroșu, ale cărei rezultate au fost corelate cu cele obținute prin alte metode de investigație, în principal, microscopia electronică de baleiaj (SEM), analiza termică (TG//ATD), difracția de raze X (XRD), spectroscopia de fotoluminescență (PL).

În cadrul tezei s-a urmărit atât caracterizarea structurală a materialelor rezultate din sinteză, cât și transformarea acestora prin tratamente termice adecvate în materiale cristalizate.

Pentru început se prezintă rezultatele obținute în sisteme oxidice policomponente pe bază de SiO_2 (capitolul 3.3.1, din teză).

S-au selectat sistemele conținând cantități ridicate de SiO₂, acesta fiind oxidul care a fost cel mai mult și cel mai aprofundat studiat din punct de vedere al spectroscopiei FT-IR.

Studiul a avut ca scop stabilirea formării fazelor în sisteme binare și ternare de tip SiO_2 -TiO_2, SiO_2 -TiO_2-Al₂O₃, simple și dopate cu Er^{3+} , de interes pentru obținerea de ghiduri de undă. Cercetările prezentate în teză s-au referit, în special, la stabilirea formării fazelor prin tratamente termice la temperaturi diferite și la modul în care fazele formate influențează proprietățile optice.

În continuare, s-au studiat sisteme oxidice pe bază de TiO₂, MgO si Al₂O₃, cu posibile aplicații ca adsorbanți sau catalizatori. S-a abordat atât studiul formării fazelor în sisteme binare de tip TiO₂-MgO și TiO₂-Al₂O₃, cât și influența dopanților asupra formării fazelor în sistemul Al₂O₃, dopat cu Ni (capitolele 3.3.2, 3.3.3 și 3.3.4., din teză).

Ultimul sistem oxidic abordat a fost sistemul binar V_2O_5 -CeO₂, care prezintă proprietăți anticorozive. În acest caz s-a efectuat un studiu comparativ al formării fazelor în prezența și absența unor agenți de chelare, în mediu apos (capitolul 3.3.5, din teză).

Pe lângă sistemele oxidice menționate s-au studiat și sisteme nanocompozite formate din matrici de SiO₂, obținute din precursori diferiți (tetraetoxi silan, silice coloidală și sol de silicat de sodiu) dopate cu ciclodextrine și pesticide (triclorfon) (capitolul 3.3.6, din teză).

Pe baza rezultatelor obținute în toate sistemele studiate, s-a propus întocmirea unei baze de date spectrale pentru compușii oxidici obținuti prin metoda sol-gel, conform exemplelor prezentate în Anexa.

3. SISTEME OXIDICE STUDIATE

3.1. PULBERI OXIDICE ÎN SISTEMELE SiO₂-TiO₂ și SiO₂-TiO₂-Al₂O₃ [5]

Sistemul binar SiO_2 -Ti O_2 este unul din cele mai studiate sisteme pentru obținerea de materiale fotoluminiscente. În acest scop sunt utilizate rapoarte diferite între oxizi, procese de sinteză și tratamente termice diferite ca și doparea cu ioni de metale tranziționale .

În cadrul unor studii anterioarea au fost preparate filme în sistemele silice–oxid de titan sau silice–oxid de titan–alumina, dopate cu Er^{3+} cu compoziții molare de 90% SiO₂-10% TiO₂ sau 85% SiO₂-10% TiO₂-5% Al₂O₃ și Er_2O_3 0.5% pentru aplicații ca ghiduri de undă. Soluțiile utilizate pentru depunerea filmelor au fost preparate prin metoda sol-gel. Metoda sol-gel a fost selectată datorită faptului că aceasta reprezintă una dintre cele mai flexibile și convenabile metode de preparare a filmelor și nanopulberilor [4].

S-a constatat că prezența Al^{3+} în compozițiile menționate a mărit distribuția omogenă a Er^{3+} în probe, dar a determinat reducerea stabilității chimice a acestora. Pentru a explica comportamentul menționat, în cadrul tezei a fost inițiat un studiu comparativ al formării fazelor pornind de la gelurile rezultate din soluțiile utilizate pentru depunerea de filme [5].

Spectrele FT-IR ale gelurilor obținute sunt prezentate în Figura 1, iar atribuirea benzilor de absorbție este sumarizată in Tabelul 1.

Benzile largi între 3500 cm⁻¹ și 3200 cm⁻¹ indică prezența grupărilor hidroxil.

Banda în jurul valorii de 1378 cm^{-1} este atribuită vibrațiilor NO₃ provenite din compoziția HNO₃, introdus în amestecul de reacție drept catalizator, iar banda la 1626 cm ⁻¹ este atribuită vibrațiilor de îndoire a apei moleculare.

Benzile în jurul valorii de 2850-2920 cm⁻¹ sunt atribuite resturilor organice datorate reactivilor utilizați în reacție (alcoxizi) și a alcoolului utilizat ca solvent.

Banda din jurul valorii de 1085 cm⁻¹ este atribuită vibraței Si-O-Si de întindere asimetrică în SiO₂ amorf. Banda de la 940 cm⁻¹ indică prezența vibrației de întindere a Si-OH.

Banda în jurul valorii de 459 cm⁻¹ este atribuită vibrațiilor Si-O-Si iar la proba Si-Ti-Al indică și prezența vibrației Al-O.

Fig.1. Spectrele FT-IR ale gelurilor rezultate din sinteză

Benzile în jurul valorii de 2850-2920 cm⁻¹ sunt atribuite resturilor organice datorate reactivilor utilizați în reacție (alcoxizi) și a alcoolului utilizat ca solvent.

Banda din jurul valorii de 1085 cm⁻¹ este atribuită vibraței Si-O-Si de întindere asimetrică în SiO₂ amorf. Banda de la 940 cm⁻¹ indică prezența vibrației de întindere a Si-OH. Banda în jurul valorii de 459 cm⁻¹ este atribuită vibrațiilor Si-O-Si iar la proba Si-Ti-Al indică și prezența vibrației Al-O.

Spectrele FT-IR ale pulberilor tratate termic sunt prezentate în Fig.2a pentru temperatura de 500°C și Fig.2b pentru temperatura de 900°C, iar atribuirea benzilor de absorbție este sumarizată în Tabelul 2.

In comparație cu gelurile rezultate din sinteză, pentru probele tratate termic intensitățile benzilor de vibrație ale grupărilor hidroxil, ale apei adsorbite și ale apei moleculare precum și ale grupării NO₃, descresc.

	5102-110	O_2 \$1 510	$J_2 - IIO_2 - AI_2C$	J_3 , nedopate și dopate cu Er st
	P	robe		Atribuire
ST	ST-Er	STA	STA -Er	
471	459	435	459	Si-O-Si
	587	561	561	Ti-O, Al-O, Ti-O-Al
787	767	794	800	Si-O-Si întindere simetrică in SiO ₂ amorf
940	962	927	953	Si-OH, vibrație de întindere
1062	1085	1059	1062	Si-O-Si întindere asimetrică in SiO ₂
				amorf Al-O-Al
1190	1190	1190	1190	Si-O-Si, LO mode întindere asimetrica
				în SiO ₂ amorf
1375	1386	1372	1386	vNO ₃
1633	1633	1641	1633	$\nu_{s}(OH)$ în apă H ₂ O
2865	2854	2842	2847	v _{as} (CH)
2913	2924	2914	2913	v _{as} (CH ₃)
3441	3441	3436	3427	v _{as} (OH)apă adsorbită

Tabelul 1. Atribuirea benzilor de vibrație ale gelurilor rezultate din sinteză în sistemele SiO₂-TiO₂ si SiO₂-TiO₂-Al₂O₃, nedopate și dopate cu Er³⁺

Tabelul 2. Atribuirea benzilor de vibrație ale pulberilor oxidice, tratate termic la 500⁰C și 900^oC, în sistemele SiO₂-TiO₂ și SiO₂-TiO₂-Al₂O₃, nedopate și dopate cu Er^{3+}

		Atribuire						
	50	00^{0} C			90)0°C		
ST	ST-Er	STA	STA-Er	ST	ST-Er	STA	STA-Er	
455	453	456	465	461	461	460	461	Si-O-Si
790	796	790	799	799	805	795	795	Si-O-Si întindere
								simetrică în SiO ₂ amorf
943	950	939	943	929	929	935	929	v _{as} Si-O(H),
1071	1071	1071	1071	1095	1095	1095	1095	Si-O-Si intindere
								asimetrică in SiO ₂ amorf
1232	1232	1232	1232	1218	1218	1218	1218	Si-O-Si, LO mode de
								intindere asimetrica in
								SiO ₂ amorf
1391	1382	1382	1391	1378	1388	1383	1378	vNO ₃
1640	1637	1640	1640	1637	1636	1634	1636	v _s (OH) în apă
2852	2847	2843	2852	2852	2850	2848	2850	v(CH)
2919	2930	2928	2919	2920	2926	2920	2917	$v_{as}(CH_3)$
3444	3465	3454	3454	3444	3442	3456	3444	v _{as} (OH) apă adsorbită

Rezultatele spectroscopiei FT-IR au fost corelate cu cele obtinute prin SEM, XRD și fotoluminiscenta (PL)

Fig.2. Spectrele FT-IR ale pulberilor tratate termic a) la 500°C și b) la 900°C

Concluzii

Gelurile obținute având în compoziție majoritar SiO₂ prezintă spectre FT-IR similare cu cele ale SiO₂ pur. Prezența compușilor minoritari se pune în evidență doar prin deplasarea maximelor corespunzatoare vibrațiilor caracteristice legaturilor Si-O-Si și Si-OH.

Studiile structurale, morfologice. optice și termice ale gelurilor obținute nu au pus în evidență diferențe semnificative între probe.

In cazul probelor tratate termic la temperaturile de 500 și 900°C, spectroscopia FT-IR a indicat o mai bună structurare a legăturilor M-O-M, concomitent cu reducerea semnificativă a benzilor de vibrație ale componentelor organice, ale apei adsorbite și ale oxidrililor structurali, dar nu eliminarea completă a acestora.

O comportare interesantă s-a observat în cazul probelor dopate cu Er^{3+,} în care prezența acestuia favorizează reacțiile de policondensare ale legăturilor de tip Si-OH.

Difracția de raze X a pus în evidență cristalizarea TiO_2 anatas în cazul probelor dopate cu Er^{3+} , ceea ce conduce la concluzia că prezența acestuia joaca rol de germene de cristalizare al anatasului.

Spectele de fluorescență, nu pezintă diferențe semnificative în cazul probelor tratate termic, față de gelurile inițiale, probabil, datorită prezenței resturilor organice, ale apei adsorbite și ale oxidrililor structurali, în ambele cazuri.

3.2. PULBERI OXIDICE ÎN SISTEMUL TiO2-MgO

Printre nanoparticule oxidice mono- și bicomponente, cele care aparțin sistemului MgO-TiO₂ prezintă un interes crescut în domeniul protecției și decontaminării mediului, fiind efectuate numeroase studii privind prepararea lor prin metode chimice, în soluție și caracterizarea acestora.

De asemenea, nanoparticule de oxizi micști din sistemul MgO-TiO₂ și-au găsit aplicații în multe alte domenii ca, senzori, pigmenți, condensatoare, catalizatori, adsorbanți sau materii prime pentru sinteza de materiale ceramice avansate, policristaline [6].

Scopul studiului efectuat în cadrul tezei a fost obținerea de pulberi oxidice în sistemul MgO-TiO₂ prin metoda sol-gel și investigarea capacitătii lor de adsorbție față de CO₂ și CO .[7]

Spectrele FT-IR ale pulberilor preparate sunt prezentate în Fig. 3, iar atribuirea benzilor de vibrație, conform datelor din literatură sunt indicate în Tabelul 3.

Probele uscate prezintă benzi de vibrație M-O-M la lungimi de undă mici (800-450 cm⁻¹). La lungimi de undă mai mari, pot fi observate benzile caracteristice resturilor organice, ionului azotat, ioniilor hidroxil și apei adsorbite din compoziția gelurilor.

Fig. 3. Spectrele FT-IR ale pulberilor oxidice obținute din sinteză: TiO₂, MgO, MgO-TiO₂

	P robe	e	Atribuire				
TiO ₂	MgO	TiO ₂ -MgO					
3395	3434	3383, 3211	v_{as} (OH) apă adsorbită				
2904	2909	2909	$v_{as}(CH_3)$				
2843	2843	2843	v(CH)				
1630	1619	1646	v _s (OH) in apă				
		1535	$v_{as}(CO)$				
1441	1435		v(CO ²⁻ 3)				
1387	1381	1384	v (NO ₃)				
	1094		$v_{as}(C-O-C)$ grup				
	852		$v_{s}(CO)$				
	666		v(Mg-O)				
		601	O-Ti-O-Mg-O				
586			v(Ti-O)				
	440		v(Mg-O)				
586	440	601	0-Ti-O-Mg-O v(Ti-O) v(Mg-O)				

Tabelul 3. Atribuirea benzilor de vibrație ale pulberilor oxidice TiO₂, MgO, MgO-TiO₂

În spectrele FT-IR ale probelor tratate termic, pezentate în Fig.4 benzile de vibrație M-O-M la lungimi de de undă joasă sunt mai bine conturate, comparativ cu cele corespunzătoare pulberilor netratate termic. Acesta este rezultatul unei ordonări structurale mai bune a pulberilor după tratament termic. Benzile caracteristice precursorilor și altor eventuale impurități sunt foarte puțin vizibile în probe, cu excepția MgO. Benzile observate între 1000 -650 cm⁻¹ în aceste probe sunt atribuite H₂O, CO₂ și altor specii organice adsorbite din mediul înconjurător.

Acest fapt poate fi corelat cu porozitatea ridicată a oxizilor sintetizați prin metode chimice și tratați termic la temperaturi joase. În aceste condiții reactivitatea suprafeței pulberilor este ridicată, ceea ce conduce la posibilitatea adsorbției de apă și substanțe organice din atmosferă.

Fig. 4. Spectrele FT-IR ale pulberilor oxidice tratate termic: TiO₂, MgO, MgO-TiO₂

	Probe		Atribuire
TiO ₂	MgO	TiO ₂ -MgO	
3395	3434	3383, 3211	v _{as} (OH) apă adsorbită
2904	2909	2909	$v_{as}(CH_3)$
2843	2843	2843	v(CH)
1630	1619	1646	v _s (OH) in apă
		1535	$v_{as}(CO)$
1441	1435		v(CO ²⁻ 3)
1387	1381	1384	v (NO ₃)
	1094		$v_{as}(C-O-C)$ grup
	852		$v_{s}(CO)$
	666		v(Mg-O)
		601	O-Ti-O-Mg-O
586			v(Ti-O)
	440		v(Mg-O)

Tabelul 4. Atribuirea benzilor de vibrație ale pulberilor oxidice tratate termic

Concluzii

Proprietățile morfologice și structurale ale nanopulberilor de TiO₂, MgO și MgO-TiO₂, obținute prin metoda sol-gel, în mediu alcoolic au fost evaluate pe baza rezultatelor obținute prin spectroscopie FT-IR, microscopie electronică de baleiaj și difracție de raze X.

Spectroscopia FT-IR, a pus în evidență diferențele care apar între probele sintetizate și cele tratate la temperaturi stabilite pe baza analizei termice. S-a constatat că reziduurile

organice și hidroxilii structurali, nu sunt complet îndepărtați nici în urma tratamentului termic utilizat.

Prezența hidroxizilor structurali în compoziția nanopulberilor obținute prin metoda sol-gel este bine cunoscută, iar apa adsorbită și rezidurile organice se consideră că apar datorită unui proces de adsorbție din atmosfera ambiantă.

Observațiile menționate urmează a fi luate în considerare în cazul utilizării unor asemenea nanostructuri.

3.3. PULBERI OXIDICE ÎN SISTEMUL Al₂O₃-TiO₂

Nanoparticulele oxidice binare pot avea proprietăți superioare față de cele ale oxizilor monocomponenți. Studii ale compusului binar constând din cei doi oxizi menționați mai sus, pot furniza date pentru îmbunătățirea unor caracteristici ale oxizilor individuali [8]. Cele mai multe studii referitoare la prepararea prin metoda sol-gel a pulberilor în sistemul binar menționat au fost dedicate utilizării lor ca precursori pentru sinteza compusului binar Al₂TiO₅ (tialit) cu aplicații în aeronautică și industria de automobile sau ca implanturi ortopedice și dentare.

Aplicațiile pulberilor pe bază de tialit s-au extins însă și în alte domenii ca, hidrotratarea petrolului sau potențial adsorbant în decontaminarea agenților chimici utilizați ca arme chimice. Pentru ultimele două aplicații porozitatea pulberilor este de o mare importanță.

În prezentul capitol al tezei, se prezintă rezultatele sintezei prin metoda sol-gel a pulberilor monocomponente de TiO₂ și Al₂O₃, precum și ale pulberilor binare din sistemul Al₂O₃-TiO₂. În plus, este prezentat un studiu comparativ al proprietaților structurale și morfologice [9].

Pulberile obținute în condițiile experimentale au fost tratate termic la temperaturi stabilite prin analiza termică, și anume: Al₂O₃ la 600 °C, TiO₂ la 300 °C, Al₂O₃-TiO₂ la 450 °C.

Spectrele FT-IR ale pulberilor tratate termic sunt prezentate în Fig. 5 iar atribuirea benzilor de vibrație ale probelor sunt sumarizate în Tabelul 5. Se poate observa că, în toate cazurile, pe lângă benzile de vibrație M-O-M, care sunt situate în intervalul 400-1000 cm⁻¹, apar benzi de vibrație caracteristice prezenței apei adsorbite (1638 cm⁻¹), a hidroxilor structurali (3445 cm⁻¹) și grupărilor organice adsorbite din atmosferă (1410 cm⁻¹, 2928 și 2845 cm⁻¹).

Fig. 5.Spectrele FT-IR ale pulberilor monocomponente și binare, tratate termic (TiO₂, Al₂O₃ și Al₂O₃-TiO₂)

Tabelul 5. Atribuirea benzilor de vibrație ale probelor monocomponente și binare: TiO₂, Al₂O₃ și Al₂O₃-TiO₂, tratate termic

	P robe		Atribuire				
TiO ₂ 300°C	Al ₂ O ₃ 600°C	Al ₂ O ₃₋ TiO ₂ 450°C					
3435	3471	3432	v _{as} (OH) apă adsorbită				
2916	2909	2916	$v_{as}(CH_3)$				
2850	2850	2843	v(CH)				
1633	1633	1633	v _s (OH) în apă				
1385	1405	1398	vNO ₃				
	816	831	Al-O				
	630		Ti-O-Ti				
	587	600	Al-O, Ti-O-Al				
574			Ti-O				

Este bine cunoscut faptul că unele dintre vibrațiile Ti-O și Al-O se suprapun în spectrele FT-IR între 400 si 750 cm⁻¹. În general, unitățile octaedrice AlO₆ sunt caracterizate prin prezența vibrațiilor de întindere între 600 si 750 cm⁻¹ și a vibrațiilor de îndoire la aproximativ 450 cm⁻¹. Al-O coordinat tetraedric, prezintă benzi în regiunea 750-850 cm⁻¹. Vibrația de întindere a Ti-O terminal este prezentă în spectre sub 730 cm⁻¹, iar banda Ti-O-Ti a rețelei de oxid de titan este detectată la 640 cm⁻¹. Spectrul FT-IR al pulberii binare se situează între 550 și 800 cm⁻¹. Acest lucru se datorează suprapunerii benzilor atribuite coordinării tetraedrice a Al și Ti în legaturile terminale Al-O și respectiv Ti-O. În plus, o nouă bandă mai puțin intensă este detectată la 583 cm⁻¹, care poate fi atribuită hetero legăturii metal – oxigen, -Ti-O-Al-.

Concluzii

În cadrul prezentului capitol s-a studiat prepararea și caracterizarea structurală, termică și morfologică a unor pulberi monocomponente de TiO₂, Al₂O₃ și a pulberii binare TiO₂-Al₂O₃.

Analiza termică a pulberilor rezultate din sinteză a pus în evidență efectele termice de descompunere ale acestora și temperaturile la care descompunerea este finalizată.

Caracterizarea structurală și morfologică a pulberilor realizate a pus în evidență formarea TiO_2 cu structură de anatas, a Al_2O_3 cu structură de gama alumină și a pulberii binare TiO_2 - Al_2O_3 , amorfe.

Spectroscopia FT-IR confirmă existența în pulberile tratate termic a hidroxililor structurali, a unor cantitați reduse de apă adsorbită și a unor rezidiuri organice, care sunt și în acest caz, atribuite adsorbției acestora din atmosferă.

3.4. PULBERI OXIDICE ÎN SISTEMUL Al₂O₃-NiO

În prezentul capitol al tezei se prezintă rezultatele caracterizării structurale ale unor catalizatori pe bază de Al₂O₃ obtinuți prin gelifierea simultană a izopropoxidului de aluminiu și a azotatului de nichel, comparativ cu alumina pură obținută, din aceiași precursori [10].

Prin studii fizico-structurale au fost puse în evidență schimbările induse de introducerea precursorului de Ni, înainte sau după hidroliza alcoxidului de aluminiu.

Sinteza aluminelor cu adaos de Ni s-a realizat pentru obținerea unor catalizatori pentru reformarea glicerolului în vederea generării de H₂ pentru aplicații în celule de combustie [11].

S-a studiat prepararea pulberile de Al₂O₃ cu conținut de NiO în cantitate de 5% greutate (Proba AN5), 10% greutate (Proba AN10) și 20% greutate (AN20 probă). Prepararea pulberilor s-a realizat prin procedeul sol-gel. Introducerea Ni în solul de alumină a fost efectuată prin două proceduri: înainte și după hidroliza alcoxidului de aluminiu.

Caracterizarile morfologice si structurale ale acestor probe au fost analizate comparativ cu cele ale Al₂O₃, NiO și NiAl₂O₄.

Spectrele FT-IR (Fig.6 și 7) prezintă pentru toate probele, în intervalul 500-900 cm⁻¹ frecvențe de întindere metal-oxigen, asociat cu vibrațiile legăturilor Al-O, Ni-O sau Ni-O-Al. În Tabelele 6 si 7 sunt prezentate atribuirile benzilor de vibrație ale probelor.

Benzile de întindere Al-O pot fi atribuite diferitelor stări de coordinare ale atomilor de Al: AlO₆ (~770 cm⁻¹) și AlO₄ (~570 și 380 cm⁻¹) (proba A). Umărul de la 870 cm⁻¹ poate fi atribuit modului vibrațional al Al-O, localizat în stratul de suprafață, cel mai probabil implicând o deformare a grupărilor OH de suprafață. Fecvențele de întindere ale Ni-O se găsesc în intervalul 400-500 cm⁻¹ (~490 si 435 cm⁻¹) (proba N). Sunt observate, de asemenea, și frecvențele caracteristice ale legăturilor Al-O-Ni (450-800 cm⁻¹) (proba S) în pulberea obținută după hidroliza precursorilor, ceea ce indică faptul că legăturile Ni-O-Al se formează și rămân intacte în timpul procesului hidrolizei. Este probabil ca vibrațiile de tranziție metal-oxigen ale spinelului să se suprapună cu benzile Al-O.

Pentru pulberile de alumină în ameste cu Ni (probele de AN), spectrul FT-IR a pus în evidență o ușoară deplasare a maximului benzilor de absorbție M-O spre numere de undă mai mici. Se constată că, după dopaj, maximele de absorbție M-O nu au fost perturbate semnificativ

Fig. 6. Spectrele FT-IR ale probelor de alumină cu conținut de 5% Ni (AN 5) și 10% Ni (AN10), Notă: Ni a fost adugat fie înainte de hidroliza izopropilatului de Al, în probele (a) ori după hidroliză în probele (b).

	N1	% N1 (AN10)		
	Probe	Atribuiri		
5%Ni (AN 5)	10% Ni (AN 10)	AN 10a	AN 10b	
578	558	769	568	Al-O, Ni-O, Ni-O-Al
768	748	739	748	Al-O, Ni-O, Ni-O-Al
		1394	1394	v (NO ₃)
1641	1632	1632	1632	ν _s (OH) în apă
2856	2847	2874	2847	v(CH)
2912	2922	2950	2912	vas(CH ₃)
3454	3454	3444	3454	v_{as} (OH)

Tabelul 6. Atribuirea benzilor de vibrație ale probelor de alumină cu conținut de 5% Ni (AN 5) și 10% Ni (AN10)

Notă: Ni a fost adugat fie înainte de hidroliza izopropilatului de Al, în probele (a) ori după hidroliză în probele (b).

Fig. 7. Spectrele FT-IR ale probelor A (Al₂O₃), S (NiAl₂O₄), AN20((a și (b) (NiO), și a probei AN30-imp (Al₂O₃ dopat cu 30% Ni prin metoda b)

Se constată că, prin adaugare de NiO, maximele de absorbție M-O nu au fost perturbate semnificativ. Acest lucru indică faptul că nu a avut loc nici o interacțiune foarte extinsă între nichel și oxidul de alumină, în această etapă (450 °C) sau că interacțiunea a fost limitată doar la un număr mic de poziții active. Toate probele prezintă frecvențe de întindere largi și intense ale hidroxililor [ν (OH)], care pot fi atribuite suprapunerii benzilor din cauza apei adsorbite la suprafață (~3400 cm⁻¹). Benzile de la ~1640 cm ⁻¹ atribuite vibrațiilor de încovoiere a moleculelor de apă [β (H₂O)], împreună cu benzile C-H rezidual [δ (CH)] (1460-1500 cm⁻¹) și (CO₂) adsorbit (2300-2400 cm⁻¹), sunt de asemenea observate.\

	Probe									
A (Al ₂ O ₃)	S (NiAl ₂ O ₄)	N (NiO)	AN20b	AN20b	AN30imp					
		426				Ni-O				
	474	489				Ni-O, Al-O-Ni				
559			568	568	587	AlO ₄				
	739		748		739	Al-O-Ni				
805						AlO ₆				
	1401		1392		1392	v (NO ₃)				
	1543		1525			С-Н				
1638	1638	1619	1628	1638	1638	vs(OH) în apă				
	2868				2850	ν(CH)				
	2935				2915	$v_{as}(CH_3)$				
3474	3445	3445	3474	3465		v _{as} (OH)				

Tabelul 7 Atribuirea benzilor de vibrație ale probelor A (Al₂O₃), S (NiAl₂O₄), N (NiO), AN(a și b) și ale probei AN30-imp (Al₂O₃ dopat cu 30% Ni prin metoda b)

Notă: AN30imp, reprezintă proba de Al₂O₃ cu continut de 30%Ni obținută prin metoda impregnării

Concluzii

In cadrul capitolului, s-a urmărit stabilirea influenței introducerii precursorului de Ni în amestecul de reacție înainte sau după hidroliza precursorului de Al.

Spectroscopia FT-IR a pus în evidență pentru pulberile de alumină în amestec cu Ni (probele de AN), o ușoară deplasare a maximului benzilor de absorbție M-O spre numere de undă mai mici, maximele de absorbție Al-O nefiind perturbate semnificativ. Si în sistemul Al₂O₃-NiO s-a pus în evidență prezența benzilor de vibrație ale hidroxililor [ν (OH)], și ale apei adsorbite. Difracția de raze X a stabilit faptul că atunci când Ni se adaugă la sfârșitul reacției, acesta întârzie cristalizarea aluminei și induce o dezordonare a rețelei.

Modul diferit de adaugare al Ni influențează, de asemenea și spectrele în vizibil ale probelor, efect care are influența asupra proprietăților fotocatalitice ale probelor rezultate.

3.6. PULBERI OXIDICE ÎN SISTEMUL V2O5-CeO2

Gelurile, filmele și pulberile obținute prin metoda sol-gel în sistemul V_2O_5 -CeO₂ au fost intens studiate, datorită proprietăților lor catalitice, electrochimice și electronice ca urmare a capacității lor de a forma combinații în mai multe stări de valență [12,13].

In prezentul capitol s-a studiat sinteza unor pulberi în sistemul oxidic binar V_2O_5 -CeO₂, obținute în soluții apoase, stabilindu-se influența raporturilor dintre componenți (V/Ce) și a agentului de complexare, poliolul, asupra structurii și a morfologiei pulberilor oxidice binare obținute [14].

Au fost preparate pulberi oxidice mixte în sistemul V/Ce, la două raporturi atomice diferite (Ce /V = 1/2 și Ce/V = 1/1), dintr-o soluție de Ce(NH₄)₂(NO₃)₆ și respectiv V₂O₅ în acid azotic diluat, în absenta sau prezența dietilen glicolului (DEG) ca agent de complexare și de dispersie. Acesta s-a adăugat într.-un raport molar de 0,01 precursori V-Ce/0,42 DEG. Pulberile au fost separate și tratate termic 30 min la 400 °C

Spectrele FT-IR ale pulberilor binare obținute din sinteză sunt prezentate în Fig.8.

Fig. 8. Spectrele FT-IR ale probelor rezultate din sinteză: a) 1V/1Ce si b) 2V/1Ce cu și fără DEG

Se observă formarea fazei CeVO₄ direct prin reacțiile ce au loc în soluție, fără nici un tratament termic ulterior. Benzile de vibrație corespunzătoare CeVO₄ apar la 766-800 cm⁻¹, cu un umăr la 737 cm⁻¹, care este atribuit unităților VO₄ din structura ortovanadatului. Urmele de V₂O₅ pot fi observate la probele preparate cu ambele rapoarte molare, atât în prezența cât și în absența DEG (benzi la aproximativ 1000 cm⁻¹). Banda de la aproximativ 1600 cm⁻¹ indică prezența apei. Benzile la peste 2500 cm⁻¹ (care nu sunt prezentate aici) sunt caracteristice pentru gruparile OH din dioli și CH alifatic. Banda de la aproximativ 1380 cm⁻¹ poate fi atribuită vibrațiilor vNO₃. Influența evidentă a prezenței DEG asupra cristalizării CeVO₄, pusă în evidență și prin celelalte metode de investigare utilizate (TG/DTA, XRD, TEM), ar putea fi corelată cu implicarea sa în reacțiile de oxidare-reducere care s-ar putea produce în timpul formării pulberilor. Aceste reacții ar putea spori gradul de reducere al Ce⁴⁺ la Ce³⁺ și în acest fel ar favoriza formarea de CeVO₄.

Atribuirea benzilor de vibrație ale pulberilor oxidice sunt prezentate în Tabelul 8.

	Probe									
1V/1Ce	1V/1Ce+DEG	2V/1Ce	2V/1Ce+DEG							
439	439			$CeVO_4$						
836	808			CeVO ₄						
737	737	737	737	VO_4						
		785	785	$CeVO_4$						
			978	$CeVO_4$						
	1057		1053	V_2O_5						
	1375	1386	1386	vNO ₃						
1636	1636	1636	1636	v _s (OH) în apă						

Tabelul 8. Atribuirea benzilor de vibrație ale pulberilor oxidice 1V/1Ce si b) 2V/1Ce cu si fără DEG, rezultate din sinteză

In cazul probelor tratate termic, spectrele IR din Fig. 9(a și b) arată formarea compusului CeVO₄ (prezența benzilor de la 444 cm⁻¹ și de la aproximativ 800 cm⁻¹), în cazul ambelor rapoarte (2V/1Ce și 1V/1Ce), atât în absența cât și în prezența DEG. Atribuirea benzilor de vibrație ale pulberilor oxidice tratate termic este prezentată în Tabelul 9.

Fig. 9. Spectrele FT-IR ale probelor tratate termic (a) fără DEG (b) și cu DEG

Tabelul 9. Atribuirea benzilor de vibrație ale pulberilor oxi	dice tratate termic:
1V/1Ce și b) 2V/1Ce cu și fără DEG	

	Atribuire						
1V/1Ce	1V/1Ce 2V/1Ce 1V/1Ce+DEG 2V/1Ce+DEG						
444	444	444	444	CeVO ₄			
		717	717	VO_4			
792	776	790	790	CeVO ₄			
			1029	V_2O_5			
1620	1620	1620	1620	$v_s(OH)$ in apa			

Urme de V₂O₅ au fost găsite numai în cazul raportului de 2V/1Ce datorită faptului că tratamentul termic a condus la finalizarea formării vanadatului de ceriu cu raport V/Ce = 1/1. Caracteristicile spectrale ale grupărilor H₂O, NO₃⁻, hidroxil diolic și CH alifatic (1600, 1300-1400 cm⁻¹ și >2500 cm⁻¹) dispar. Prezența DEG utilizată pentru îmbunătățirea morfologiei particulelor sau a dimensiunii acestora nu influențează compoziția probelor tratate termic, dar aduce unele modificări în ordonarea și structura probelor (apare un umăr la aproximativ 700 cm⁻¹ asociat cu unitățile VO₄ din structura de ortovanadat).

Concluzii

Folosind metoda de co-gelifiere în soluții apoase, au fost preparate pulberi ale oxizilor binari în sistemul V₂O₅-CeO₂, la diferite rapoarte molare ale componenților și în prezența sau absența agentului de chelare (DEG).

Spectroscopia FT-IR asociată cu caracterizarile XRD și TEM au indicat faptul că s-au obținut pulberile la scară nanometrică iar prezența agentului de chelare (DEG) a favorizat

formarea și cristalizarea CeVO₄. În cazul probelor 2V/1Ce, alături de CeVO₄, a fost identificat oxid de vanadiu în exces.

Noul compus $Ce^{+3}V^{+5}O_4$ apare ca rezultat al reacțiilor de oxido-reducere datorate speciilor ionice formate de precursori în soluțiile inițiale acide. Prezența speciilor V⁺⁴ (culoarea albastru-verzui e a soluției în timpul precipitării cu hidroxid de amoniu), ar putea acționa ca agenți de reducere a Ce^{+4} : V⁺⁴ \rightarrow V⁺⁵ - 1e iar $Ce^{+4} \rightarrow Ce^{+3}$ + 1e

3.7. SISTEME COMPOZITE SILICE-COMPUȘI ORGANICI (CICLODEXTRINE SI PESTICIDE)

În cadrul tezei s-au preparat și au fost caracterizate pulberi compozite sol-gel bazate pe triclorfon [O,O-dimetil-(2,2,2-triclor-1-hidroxietil0 fosfonat] (T) ca pesticid organofosforic încorporat în matrice de silice generată de trei surse diferite de SiO₂: tetraetilortosilicat (TEOS), silice coloidală (CS) și silicat de sodiu (SS) [15]. Au fost utilizate două rute ale metodei sol-gel (ruta alcoxidică și respectiv ruta apoasă) . Alegerea rutei apoase s-a realizat din motive economice și ecologice, precursorii de SiO₂ folosiți în ruta apoasă sunt mai puțin costisitori decât TEOS și atacul solului este aproape inexistent în cazul pesticidelor înglobate în geluri obținute prin aceasta rută. Raportul pesticid/SiO₂ a fost 1/3 în greutate.

Un alt obiectiv al tezei a fost acela de a stabili posibilitatea utilizării ciclodextrinelor în scopul îmbunătățirii eliberării controlate a pesticidului din matricele de silice, fiind bine cunoscut faptul că ciclodextrinele au capacitatea de a forma complecși de incluziune cu o mare varietate de substanțe chimice, agricole. Compoziția (procente în greutate) a probelor corespunzătoare a fost: 19% T, 24 % CD și respectiv 57% SiO₂.

Spectrele FT-IR ale matricii de silice, ale triclorfonului și ale compozitelor pesticidsilice, obținute din precursorii TEOS, CS și SS, sunt prezentate în Fig.10.

Benzile caracteristice de vibrație pentru gelurile de SiO_2 sunt puse in evidență, indiferent de precursorul utilizat. Atribuirile valorilor numerelor de undă din Fig.10, sunt prezentate în Tabelul 10.

Spectrele IR ale probelor compozite, matrice de silice-triclorfon, au fost comparate cu spectrul IR al triclorfonului, constatându-se faptul că, indiferent de precursorul de SiO_2 folosit, pesticidul a fost înglobat în matricea sol-gel. Unele dintre benzile sale caracteristice de vibrație sunt absente din spectrele probelor compozite, datorită cantitații reduse de pesticid.

În ceea ce privește benzile de vibrație IR ale triclorfonului, acestea corespund următoarelor: vibrației de întindere a gupării OH la 3384 cm⁻¹, vibrației de întindere a CH între 2800 și 3000 cm⁻¹, H₂O la 1638 cm⁻¹, vibrațiilor de deformare a CH la 1461 și 1380 cm⁻ ¹, vibrației de întindere a PO la l203 cm⁻¹, vibrației de întindere a CO la 1085 și 1041 cm⁻¹ și vibrației C-Cl situate între 850 și 550 cm⁻¹.

Din Fig.10, rezultă că matricea de silice, indiferent de proveniența sa, ar putea fi un purtător excelent pentru triclorfon ca pesticid organofosforic înglobat.

Fig.10. Spectrele IR ale trichlorfonului, ale compozitelor pesticid -silice și matricii de silice corespunzătoare, obținută din precursorii: TEOS, CS și SS

Spectrele IR ale compozitelor pesticid-silice, preparată din precursori diferiți, în care au fost incluse și ciclodextrine (CD), alături de triclorfon, sunt prezentate în Fig.11, fiind evaluate compartiv cu spectrele compozitelor pesticid-silice. Cercetările s-au efectuat pentru toate cele trei tipuri de ciclodextrine (α -, β - sau γ -).

Pentru aceeași matrice de silice, toate spectrele sunt identice, indiferet de tipul de ciclodextrină utilizată. Din acest motiv în Fig.11, au fost prezentate numai spectrele probelor care conțin γ -CD. Spectrul IR al γ -CD-ului a fost, de asemenea, inclus în figură

dhenų precusori (respectiv 1205, C5 și 55)		
Precursor de SiO ₂	Lungime de unda	Atribuire
	$[cm^{-1}]$	
TEOS, CS	3458	v _{as} (OH) apă
SS	3472	adsorbită
SS	2360	
TEOS	2353	CO ₂ vib.
CS	2345	
CS	1646	v _s (OH) în apă
TEOS, SS	1638	
SS	1387	vNO ₃
CS	1381	
CS	1108	
SS	1093	vas Si-O-Si
TEOS	1085	
SS	813	v _{sim} Si-O-Si
TEOS, CS	798	
CS, SS	474	δ O-Si-O
TEOS	467	

Tabelul 10. Frecvențele benzilor IR și atribuirile lor pentru gelurile de silice obținute din diferiți precursori (respectiv TEOS, CS și SS)

.

Wavenumbers (cm⁻¹) Fig. 11. Comparația între specurele IK ale compoziteior pesuciu-since preparate din precursori diferiți și cele ale probelor corespunzătoare, în care au fost incluse și ciclodextrinele

A fost obținută o concordanță foarte bună între datele obținute, referitoare la spectrele FT-IR ale ciclodextrinelor și cele din literatură [16]. Au fost inregistrate următoarele benzi de vibrații IR: de întindere a grupării OH la 3370 cm⁻¹, de întindere a grupării CH la 2945 cm⁻¹, banda de vibrație a legăturii H la 2366 cm⁻¹, H₂O la 1660 cm⁻¹, de deformare CH la 1478 și 1351 cm⁻¹, de întinderea CO și de îndoirea OH la 1190 cm⁻¹, CO/CC care se întinde la 1115 și 1015 cm⁻¹ și vibrația inelului de piranoză la 739 și 584 cm⁻¹.

Pentru a stabili atât rolul matricei de silice cât și prezența ciclodextrinelor asupra proprietăților de eliberare a materialelor, s-au efectuat analize termice ale compozitelor preparate și teste de eliberare a triclorfonului. Cele mai bune rezultate s-au obtinut pentru probele preparate din TEOS în absența ciclodextrinei și pentru cele obținute din CS în prezența ciclodextrinelor.

Concluzii

S-au pregătit prin metoda sol-gel două serii de compozite. Prima constă în triclorfon ca pesticid, încorporat în geluri de silice obținute din diferite surse (TEOS, CS și SS). A doua serie este sintetizată similar cu prima, singura diferență dintre acestea fiind prezența ciclodextrinelor în amestecurile de reacție.

Inglobarea triclorfonului si ale triclofonului impreuna cu ciclodextrinele a fost pus in evidenta, in toate cazurile prin spectroscopie IR

Proprietățile probelor obținute depind de natura matricei de silice și de prezența sau absența ciclodextrinei în amestecurile de reacție. Cele mai bune rezultate obținute au fost pentru probele preparate din TEOS în absența ciclodextrinei și pentru cele obținute din CS în prezența ciclodextrinelor.

Proprietățile purtatoare ale matricei de silice au fost confirmate putându-se concluziona ca acestea pot fi considerate ca noi purtători ecologici.

4. CONCLUZII GENERALE

În cadrul tezei s-au efectut cercetări privind prepararea unor sisteme oxidice mono și policomponente ca și a unor nanocompozite prin metoda sol-gel și caracterizarea prin metode spectroscopice a probelor sintetizate.

Pentru început s-au prezentat rezultatele obținute în sisteme oxidice policomponente pe bază de SiO₂.

Studiul a avut ca scop stabilirea formării fazelor în sisteme binare și ternare de tip SiO_2 -TiO_2, SiO_2 -TiO_2-Al_2O_3, simple și dopate cu Er^{3+} , de interes pentru obținerea de ghiduri

de undă. Cercetările prezentate în teză s-au referit, în special, la formarea fazelor prin tratamente termice la temperaturile de 500 si 900 °C și la modul în care fazele formate influențează prorietățile optice.

În cazul probelor tratate termic, spectroscopia FT-IR a pus în evidență o mai bună structurare a legăturilor M-O-M, concomitent cu reducerea semnificativă a benzilor de vibrație ale componentelor organice, ale apei adsorbite și ale oxidrililor structurali.

Prezența hidroxizilor structurali în compoziția nanopulberilor obținute prin metoda sol-gel este bine cunoscută, chiar pentru probele tratate termic, iar apa adsorbită și resturile organice se consideră că apar datorită unui proces de adsorbție din atmosfera ambinată.

În cadrul sistemului TiO₂-MgO s-a studiat obținerea de nanopulberi de TiO₂, MgO și MgO-TiO₂, prin metoda sol-gel, în mediu alcoolic. Proprietațile morfologice și structurale au fost evaluate pe baza rezultatelor obținute prin spectroscopie FT-IR, microscopie electronică de baleiaj si difractie de raze X.

Spectroscopia FT-IR a pus în evidență, la fel ca în cazul sistemelor pe bază de SiO₂, diferențele care apar între probele sintetizate și cele tratate termic la temperaturi stabilite pe baza analizei termice. S-a constatat și în acest caz, faptul că resturile organice și hidroxilii structurali, nu sunt complet îndepărtați nici în urma tratamentului termic utilizat.

În cadrul sistemului TiO₂-Al₂O₃ s-a studiat prepararea și caracterizarea structurală, termică și morfologică a unor pulberi monocomponente de TiO₂, Al₂O₃ și a pulberii binare TiO₂-Al₂O₃.

Caracterizarea structurală și morfologică a pulberilor realizate a pus în evidență formarea TiO_2 cu structură de anatas, a Al_2O_3 cu structură de gama alumină și a pulberii binare TiO_2 - Al_2O_3 , amorfe.

Spectroscopia FT-IR confirmă și în acest caz existența în pulberile tratate termic a hidroxililor structurali, a unor cantitați reduse de apă adsorbită și a unor resturile organice, care sunt și în acest caz, atribuite adsorbției acestora din atmosferă.

În cazul sistemului Al₂O₃-NiO s-a studiat prepararea pulberile de Al₂O₃ în amestec cu NiO în cantitate de 5% greutate (Proba AN5), 10% greutate (Proba AN10) și 20% greutate (AN20 probă). Prepararea pulberilor s-a realizat prin procedeul sol-gel. Introducerea Ni în solul de alumină a fost efectuată prin două proceduri, înainte și după hidroliza alcoxidului de aluminiu.

Când Ni se adaugă la sfârșitul reacției, acesta întarzie cristalizarea aluminei și induce o dezordonare a rețelei.

Și în cazul sistemului Al₂O₃-NiO se observa existența în pulberile tratate termic a hidroxililor structurali, a unor cantitați reduse de apă adsorbită și a unor resturi organice.

În sistemul binar V₂O₅-CeO₂, prepararea pulberilor s-a realizat prin co-gelifierea în soluții apoase, la diferite rapoarte molare ale componenților (2V/1Ce sau 1V/1Ce) în prezența sau absența etilen glicolului (DEG), utilizat ca agent de chelare.

Spectroscopia FT-IR asociată cu caracterizările XRD și TEM au indicat faptul că s-au obținut pulberile la scară nanometrică iar prezența agentului de chelare (DEG) a favorizat formarea și cristalizarea CeVO₄.

În cazul probelor 2V/1Ce, alături de CeVO₄, a fost identificat oxidul de vanadiu în exces. Noul compus Ce⁺³V⁺⁵O₄ apare ca rezultat al reacțiilor de oxido-reducere datorate speciilor ionice formate de precursori în soluțiile inițiale, acide.

În cazul sistemului nanocompozit de SiO_2 s-au sintetizat prin metoda sol-gel două serii de compozite. Prima serie constă în triclorfon ca pesticid, încorporat în geluri de silice obținute din diferite surse (TEOS, CS și SS). A doua serie de compozite a fost sintetizată similar cu prima, dar prin introducerea ciclodextrinelor alături de triclorfon în amestecurile de reacție.

Prin spectroscopie FT-IR s-a pus în evidență atât înglobarea triclorfonului în toate cele 3 matrici preparate, cât și complexarea pesticid-ciclodextrină în cazul înglobării ambilor compuși.

Proprietățile probelor preparate depind de natura matricei de silice și de prezența sau absența ciclodextrinei în amestecurile de reacție. Cele mai bune rezultate au fost obținute pentru probele preparate din TEOS în absența ciclodextrinei iar pentru cele obținute din CS în prezența ciclodextrinelor.

Pe baza rezultatelor obținute în toate sistemele studiate, s-a propus întocmirea unei baze de date spectrale pentru compușii oxidici obținuți prin metoda sol-gel, conform fisei anexate.

Bibliografie selectivă:

[1] 1. A. Alagarasi, Introduction to nanomaterials, in VISWANARHAN B. Ed.Nanomaterials, Narosa Publishing House (2009)

[2] G. Cao, Nanostructures and nanomaterials, synthesis, properties and applications, Imperial College Press (2004) [3] T. Athar, Cap. 14, Metal oxide nanopowder and Cap. 17, Smart precursors for smart nanoparticles, Emerging Nanotechnologies for Manufacturing (second edition), 343 - 401 și 444–538 (2015)

[4] L. Predoana, S. Preda, M. Anastasescu, M. Stoica, M. Voicescu, C. Munteanu, R. Tomescu, D. Cristea, Nanostructured Er^{3+} -doped SiO₂-TiO₂ and SiO₂-TiO₂-Al₂O₃ sol-gel thin films for integrated optics, Opt. Mater., **46**, 481-490 (2015)

[5] **A Rusu**, L. Predoană, J. Pandele Cusu, S. Preda, M. Voicescu, S. Petrescu, M. Zaharescu, Erbium doped - SiO_2 - TiO_2 or - SiO_2 - TiO_2 - Al_2O_3 nanopowders prepared by sol-gel method, Rom.J.Mat, acceptata pentru publicare

[6] H. Jeon, Y.J. Min, S.H. Ahn, S.M. Hong, J.S. Shin, J.H. Kim, K.B. Lee, Graft copolymer templated synthesis of mesoporous MgO/TiO₂ mixed oxide nanoparticles and their CO₂ adsorbtion capacities, Colloid Surf. A, **414**, 75-81 (2012)

[7] L. Todan, T. Dascalescu, S. Preda, C. Andronescu, C. Munteanu, D.C. Culita,

A. Rusu, R. State, M. Zaharescu Porous nanosized oxide powders in the MgO-TiO₂, Ceram. Intern. **40**, 15693-15701 (2014)

[8] M. Crişan, A. Jitianu, M. Zaharescu, F. Mizukami, S.I. Niwa, Sol-Gel Mono and Polycomponent Nanosized Powders in the Al₂O₃–TiO₂–SiO₂–MgO System, J. Dispers. Sci. Tech., 24, 129-144 (2003)

[9] T. Dascalescu, L.Todan, **A. Rusu**, S. Preda, C. Andronescu, D.C. Culita, C. Munteanu, M. Zaharescu, Nanosized Al₂O₃-TiO₂ oxide powders with enhanced porosity obtained by sol-gel method, Rev. Roum.Chim., **59**(2), 125-134 (2014)

[10] M. Crişan, M. Zaharescu, V. Durga Kumari, M. Subrahmanyam, D. Crişan, N. Drăgan,
M. Răileanu, M. Jitianu, A. Rusu, G. Sadanandam, J.K. Reddy, Sol-gel based alumina
powders with catalytic applications, Appl.Surf.Sci., 258, 448-455 (2011)

[11] P. Kim, H. Kim, J.B. Joo, W. Kim, I.K. Song, J. Yi, Effect on nickel precursor on the catalytic performance of Ni/Al₂O₃ catalysts in the hydrodechlorination of 1,1,2-

trichloroethane, J. Mol.Catal, A: Chem. 256, 178-183 (2006)

[12] J. Haber, Fifty years of my romance with vanadium oxide catalysts, Catal. Today, 142, 100-113 (2009)

[13] C. Orel, M. Gaberscek, A. Turkovic, Electrical and spectroscopic characterization of nanocrystalline V/Ce oxides, Sol.Ener.Mat.Sol.C., **86**, 19-32 (2005)

[14] M. Zaharescu, L. Todan, L.Predoană, I.Atkinson, A. Rusu, C. Andronescu, V. Teodorescu, P. Osiceanu, Binary Vanadim-Cerium oxide nanopowders obtained by soft chemistry, Rev.Roum.Chim. 55, 913-922 (2010)

[15] M. Raileanu, L. Todan, M. Crisan, A. Braileanu, A. Rusu, C. Bradu, A. Carpov, M. Zaharescu, Sol-gel materials with pesticide delivery properties, J.Eviromental Protection, 1, (2011)

[16]. JM. Gavira, A. Hernanz, I. Bratu, Dehydration of β -cyclodextrin. An IR v(OH) band profile analysis. Vib Spectrosc; **32**,137-46 (2003)

Cuvinte cheie: Nanopulberi oxidice, nanocompozite, metoda sol-gel, spectroscopie FT-IR, caracterizare structurală

Gel precursor TiO₂

